
CLOUD COMPUTING FOR END USERS
PROJECT REPORT

Kenneth Nørholm 254309Krystof Spiller 253812

supervised byLars Bech Sørensen

74442 characters (not including spaces)
Software Engineering, 7th semesterDecember 16, 2019

Document versions:
Version Change Date
0.1.0 Initial structure following ICT specific guide-lines 2019/08/19
0.2.0 Start of versioning 2019/10/16
0.3.0 Use case descriptions reorganized and ex-panded; Analysis section reviewed; new Mid-dleware section in Implementation; new Fileservermodule section in Backend design

2019/11/04

0.4.0 Design - added file capabilities; Implementa-tion - revisedMiddleware section; Analysis -mi-grated GUI design fromDesign to Analysis; Test- started description of need to have parts ofthe use cases

2019/11/18

0.5.0 Design - described events capture in frontendand keyboard control API in backend; Test - alluse cases described and moved to appendix,left only illustrative one; Discussion - started;added non-functional requirement; figures up-dated to match current design

2019/11/25

0.6.0 Added Abstract and User manual (appendix);Test, Results and discussion, Conclusion andProject future considered release candidates;minor additions to Use case descriptions andDelimitations; added figure 13 to Middlewaredesign

2019/12/02

1.0.0 Minor changes after going through finalizationchecklist; changes to Glossary; minor figure up-dates; created a source code appendix
2019/12/16

Contents
Abstract 6
Glossary 7
1 Introduction 9
2 Analysis 112.1 Requirements . 11

2.1.1 User stories . 112.1.2 Non-functional requirements 112.1.3 Use cases . 112.2 Use case descriptions . 122.2.1 Use case description: Manage account 132.2.2 Use case description: Launch a specific application 142.2.3 Use case description: Control a running application 142.2.4 Use case description: Manage personal files in the system 162.3 Look and feel of GUI . 182.3.1 Main window . 182.3.2 Login and create account 182.3.3 Applications view . 202.3.4 Files view . 212.3.5 Slave application window 222.3.6 Window controls . 222.4 Delimitations . 232.5 Domain model . 232.6 Chosen technologies . 24
3 Design 253.1 Overall system design . 253.2 Frontend design . 263.2.1 Electron . 273.2.2 Communication module . 283.2.3 Event capture . 283.2.4 Web technologies . 283.3 Middleware design . 293.3.1 NetMQ / ØMQ . 303.3.2 Generic communication library 303.3.3 Usage in distributed system 353.4 Backend design . 363.4.1 Backend design overview 373.4.2 Docker . 373.4.3 Server module . 383.4.4 Slave-owner servermodule 383.4.5 File servermodule . 383.4.6 Database servermodule . 393.4.7 Slave controller . 40
4 Implementation 444.1 Frontend . 444.1.1 Image receiver . 444.1.2 React . 454.2 Middleware . 464.2.1 Encoding . 464.2.2 Middleware library . 47

5 Test 515.1 Test of use cases . 515.2 Test of non-functional requirements 545.2.1 Non-functional requirement 1 (Windows 10) 545.2.2 Non-functional requirement 2 (CPU utilization) 545.2.3 Non-functional requirement 3 (command delay) 55
6 Results and discussion 566.1 Table of test results . 566.2 Discussion of test results . 576.2.1 Discussion of failed non-functional requirement 2 (CPUutilization) . 576.2.2 Discussion of failed non-functional requirement 3 (com-mand delay) . 576.3 General discussion . 58
7 Conclusion 59
8 Project future 608.1 Business model . 608.2 Security and privacy . 608.3 Availability . 618.4 Legal matters . 618.5 Hardware provisioning . 618.6 Scalability . 618.7 Application selection . 618.8 Additional features . 628.8.1 Automatic slave initialization 628.8.2 Store application configuration 628.8.3 Automatic application updates 628.8.4 Integrated system augmentations 62
References 63
Appendices 67
A Test of use cases 67
B Source code 74
C Project description 75
D User manual 85
E Authorship 86

List of Figures
1 Use case diagram . 122 Keyboard layout with key groups 153 Login GUI within main window . 194 Create account GUI within main window 195 Applications view and navigation GUI within main window 206 Files view and navigation GUI within main window 217 Slave application window . 228 Domain model . 249 Overall system structure . 2610 Client application overall design . 2711 Objects sendable via generic communication library 3212 Reduced class diagram for the generic communication library . . . 3313 Simplified overview of the connections in the distributed system 3614 Client-to-servermodules communication library inheritance over-view . 3715 ER diagram showing the User table 4016 Client-to-slave communication library inheritance overview . . . 4117 Broken image icon . 44

Listings
1 Slave application window interval for updating an image 442 Selective rendering based on loggedIn variable 453 Usage of a feature flag . 454 Sample of the Encoding class . 465 Implementation of proxy method for remote method invocation . 486 WrapCallBack method . 487 Method SendMessage . 498 Method ReceiveSendable . 50

PROJECT REPORT

Abstract
This project envisions a system that alleviates several disadvantages that existin the way computing is done today. A fundamental problem is that capabilitiesof a computer are given and limited by the components it contains. If a laptop isbought for the purpose of use while traveling and light office work, it cannot beexpected that the same computer can run power-hungry applications. All in all,the disadvantages of the status quo can be summarized as limiting, uncomfort-able, costly and wasteful.The envisioned system moves the computation of any application to serversand provides a computationally light application that can be used on the endusers’ computers to access and interact with the applications that are being runon the servers.Furthermore, the envisioned system stores users’ files on servers where it isready to be used by the applications running on the servers or updated from theclient application running on the end user’s computer.This alsomeans that a user can access the system, with all their configuration,applications and data, from any computer with Internet access just by logging in.The developed system contains all the core functionality of the envisionedsystem. That is not to say that the developed system is a minimum viable prod-uct, as the system is lacking many critical features. However, if the envisionedsystem was to be fully implemented, it could significantly improve the way com-puting is done today.

Used technologies: C# .NET Core 2.2, Electron, React, NetMQ, Python withPyAutoGUI, Hyper-V and Docker.
Source code can be found in appendix B.

6

PROJECT REPORT

Glossary
This glossary lists terms used in this report and specifies how these terms areemphasized from within the text.In this report text that refers to code is written with a monospaced font.
Terminology
Terms listed here are italicized in the text. When used, it refers to a particularmeaning described in the list below:

• Server suite - consists of servermodules and slave modules
– Servermodule - part of a server suite. List of them follows:

* Server module
* Slave-owner servermodule
* Database servermodule
* File servermodule

– Slave module - combined unit of a slave controller running on a slave
* Slave - virtual machine responsible for running a single applica-tion that is streamed to and controlled from the client application
* Slave controller - software that runs on the slave

• Client application - native (Windows) application; made up of main applica-tion window, slave application window and communication module
– Main application window or just main window - window that appearsafter launching the client application showing GUI for login, creatingan account, applications view and files view
– Slave application window - window that displays an application run-ning on slave module
– Communication module - mediates communication between client ap-plication and server suite

• Generic communication library - custom made middleware library that isused both for the communication between the client application and server-modules as well as for communication between the client application andslave module
• Use case - collection of need to have and nice to have scenarios that groupmeaningfully

– Scenario - part of a use case defined by a series of steps that areneeded to achieve it; can be either need to have or nice to have
* Need to have - the scenarios of a use case that must be includedin the project
* Nice to have - the scenarios of a use case that may be included iftime permits

7

PROJECT REPORT

Acronyms, initialisms and abbreviations
Terms listed here arewritten inALLCAPS in the textwithout any other emphasis.

• API - Application Programming Interface
• AWS - Amazon Web Services
• CGI - Common Gateway Interface
• CIA - Confidentiality, Integrity, Availability
• CLI - Command Line Interface
• DHCP - Dynamic Host Configuration Protocol
• DOM - Document Object Model
• ER - Entity-Relationship (model or diagram)
• IPC - Inter-Process Communication
• JSON - JavaScript Object Notation
• TCP - Transmission Control Protocol

8

PROJECT REPORT

1 Introduction
This introduction is based on the project description found in appendix C.Some of the disadvantages of the status quo in computing for regular userswhere they need to own the hardware that does the actual computing are ex-amined in the following paragraphs.First and foremost, the hardware the user bought has only a limited computa-tional potential or use case that stays the same for the rest of the hardware life-time. This means that if this hardware has been bought for ordinary office work,one cannot expect to be able to run on it power-hungry applications such asAdobe Premiere Pro (Puget Systems, n.d.), Autodesk 3ds Max, Trimble SketchUpand similar, as well. On the other hand, in case of gaming consoles, which is justanother piece of computational hardware many people buy (Gilbert, 2018), onecannot expect to be able to do any office work. A lot of hardware is also madefor a specific form factor further limiting the machine’s potential. Consider forexample the constrains imposed on laptop manufacturers.Second, the hardware needs to be exchanged every so often, on averageevery 5 years (LaMarco, 2018), for a new one because of the hardware obso-lescence and therefore lacking computational performance. This necessarily re-quires some time to be spent selecting the new model and setting it up, as wellas paying the upfront cost of the computer. Furthermore, setup of a new com-puter can be a frustration with installing all of the software from the previousmachine and copying the existing data. In case of laptops it means exchangingthe whole machine instead of only the parts involved in computation, which isalso unnecessarily wasteful.Third, the hardware is tied to a certain operating system that allows to usefeatures and applications available only on that system. Although it is possibleto run many operating systems on one machine, it is nonetheless problematic torun two applications, that are each available only on a different operating system,at the same time.Fourth, the fact that the user and only the user owns and uses this hard-ware means that it in fact sits idle and unused most of the time (Alvarez, 2009).This strategy is wasteful, especially if the relative ease of centralizing processingpower, which allows for a much higher utilization (Dignan, 2019), is considered.Assume a conservative estimate that the hardware is being used for 25% of thetime and stays idle for the remaining 75%. This means that the world needsfour times more hardware than if the hardware would be used non-stop with-out being idle. This project continues the trend of getting "more from less" and"swap(ping) atoms for bits" (McAfee, 2019).Fifth, in the current paradigm, the user is responsible for updating the ap-plications, which takes extra effort and is therefore a nuisance for the regularusers.Lastly, if a user does not have the hardware with them, they cannot accesstheir machine and use it. Data sharing services such as Dropbox, Google Drive orMicrosoft OneDrive (Rouse, n.d.) allow users to put their data into cloud storage,

9

PROJECT REPORT

making them accessible from every computerwith an Internet access. As of now,however, there does not exist a solution that would provide the same comfortaccessing a users’ applications.
This bachelor project looks into a system that alleviates the aforementioneddisadvantages. A system that is inspired by the historical approach to comput-ing by mainframe and client (Beach, 2000). This mimics the approach of cloudcomputing services (GURU99, 2019). Only in this case, it is directed at end usersrather than businesses. Specifically, the system explored in this bachelor projectis that of running the applications in the cloud and streaming them to the clientapplication while allowing the user to use them as usual, similar to how remotedesktopworks. Themain technical challenge in this report can be summarized as"how to use a GUI application from a computer while the application is runningin the cloud".
Consider what a system needs to accomplish for the user.It must allow the user to use any remotely running application as if it wouldbe running locally so that the user is able to work with it as usual. It must alsoact as a central storage for all of the user’s data.

10

PROJECT REPORT

2 Analysis
This section specifies what can be expected from this project.
2.1 Requirements
For this project, the functional requirements are stated in the form of use cases.In order to create use cases, some overarching user stories are made. Further-more, non-functional requirements are stated in a numbered list.
2.1.1 User stories

1. As a user, I want to use any application from a low-end computer.
2. As a user, I want the system to be personalizable.
3. As a user, I want to be able to work with files in the system.

2.1.2 Non-functional requirements
1. The client application must run on Windows 10.
2. The client applicationmust be able to run on a low-end laptop CPUwith anaverage CPU Mark score of 4967 (PassMark, 2019) with three concurrentclient applications running, never exceeding 30% utilization.
3. The delay from a mouse or keyboard command is given until the result ofexecution being shown in the slave application window must never exceed3 seconds.

2.1.3 Use cases
Figure 1 shows the use case diagram for the system. This diagram is intended tobe used as a basis of discussion to make sure that all of the necessary function-ality is covered.The use case diagram displays both use cases and actors. The use cases repre-sent the contractual commitments. The actors are types of user the functionalityis needed for.

11

PROJECT REPORT

Figure 1: Use case diagram
Actor description

• Actor : UserA user is a person who uses the system from the client application. A usercan have many different motives for using the system. As an example,three different users are considered:
– A content creator starting out could use this system for resource in-tensive tasks such as video rendering and editing.
– A regular computer user who uses their computer for ordinary ac-tivities but finds that a computer is too expensive and would like tohave a much cheaper option, even if this would require an Internetconnection to function.
– An advanced user that is able to utilize other advantages of the sys-tem, such as being able to access their environment from any com-puterwith Internet connection or using any application notwithstand-ing the operating system on which it runs.

2.2 Use case descriptions
This section elaborates the use cases in more detail, specifying which parts of ause case are need to have and nice to have. Only the scenarios deemed as need tohave are further elaborated.

12

PROJECT REPORT

2.2.1 Use case description: Manage account
Actors: UserElaboration: This use case involves creating an account, logging in to an accountthat is already created, logging out of an account that is logged in, updating anaccount’s information and deleting an account.
Need to have:

1. Create account
2. Login to account
3. Logout of account

Nice to have:
1. Update account information
2. Delete account

Scenario 1 - Create accountPrecondition: Having launched the client applicationPost-condition: Account has been created and user is logged inScenario steps:
1. Press "Create account"
2. Enter valid required information
3. Press "Create account and login"

Scenario 2 - Login to accountPrecondition: Having launched the client application and already having createdan accountPost-condition: User is logged inScenario steps:
1. Enter required information
2. Press "Login"

Scenario 3 - Logout of accountPrecondition: Having launched the client application and be logged into an ac-countPost-condition: The login form is shownScenario steps:
1. Click on settings menu
2. Click on "Logout" from the context menu

13

PROJECT REPORT

2.2.2 Use case description: Launch a specific application
Actors: UserElaboration: This use case encompasses being able to launch an application froma client application and streaming the application running on the slave module toa slave application window.The streaming of the application comprises ofmultiplemedia streams comingboth from and to the slave module. The most important is streaming the visualrepresentation of the application running on the slave module in form of a videoor images to the slave application window. A preferred approach is streaming avideo that includes the audio feed as well as justified later in section 3.4.7.
Need to have:

1. Streaming visual representation of the application in any way
Nice to have:

1. Streaming visual representation of the application as a video
2. Streaming audio from the application to the slave application window
3. Streaming audio input (e.g. from a microphone) from the client applicationto the slave module
4. Streaming video input (e.g. from a webcam) from the client application tothe slave module

Scenario 1 - Launch a specific applicationPrecondition: Having launched the client application and be logged inPost-condition: New window is created that after initialization shows the se-lected applicationScenario steps:
1. Navigate to the applications tab
2. Find the application
3. Click the application to launch

2.2.3 Use case description: Control a running application
Actors: UserElaboration: This use case entails remote mouse control and keyboard control ofa running application.Mouse control is an important part of controlling an application, as most ap-plications in use by end users are GUI applications. It can be further brokendown into individual parts. There is movement of the mouse itself, its left and

14

PROJECT REPORT

right mouse button as well as the scroll wheel.1 The mouse buttons produceboth down and up events.The keyboard is another important control device. A keyboard layout thatis used as a reference to different key groups can be seen in figure 2. To fullysupport keyboard control all of the keys should be supported. Key clicks are justlike in the case of a mouse made up of both down and up events. These need tobe handled separately as it is otherwise not possible to use keyboard shortcuts,which often require several down events before the keys can be released.

Figure 2: Keyboard layout with key groups (Wikimedia Commons, 2018)
Need to have:

1. Use of left and right mouse buttons, both down and up events
2. Keyboard control - Character keys, enter and backspace, both down andup events

Nice to have:
1. Continuous mouse position update
2. Scrolling
3. All remaining keyboard keys, both down and up events
4. Resize the slave application window
5. Changing the local cursor so it matches the one on slave module

1Other potential mouse actions exists as well, such as back, forward and macro buttons on bothmouse and keyboard. For simplicity’s sake, these are not considered.

15

PROJECT REPORT

Scenario 1 - Use of left and right mouse buttons, both up and down eventsPrecondition: Having launched a specific applicationPost-condition: See that the mouse events were activatedScenario steps:
1. Hover the mouse above the slave application window
2. Press down on either left or right mouse button
3. Optional: move the mouse
4. Release the mouse button to activate the up event

Scenario 2 - Keyboard control - Character keys, enter and backspace, bothdown and up eventsPrecondition: Having launched a specific application and being in a state wheretyping on the keyboard produces an observable outcomePost-condition: See that the expected key output occurredScenario steps:
1. Press key
2. Release key

2.2.4 Use case description: Manage personal files in the system
Actors: UserElaboration: This use case covers upload of files to the system from the localcomputer, download of files to the local computer from the system, usage of fileswith the slave module, which includes sending a file from the system to the slavemodule, as well as saving a file from the slave module to the system. Supportingthese actions does not substitute a regular file explorer and is considered as onlya primitive file management.
Need to have:

1. Upload file from local computer to the system
2. Download file to local computer from the system
3. Use file in the system from a slave module
4. Get a file from a running application to the system

Nice to have:
1. Rename file in the system
2. Organize files in the system using folders

16

PROJECT REPORT

Scenario 1 - Upload filesPrecondition: Having launched the client application, be logged in and havingnavigated to the ’Files’ tabPost-condition: The uploaded file appears in the list of filesScenario steps:
1. Press "Upload file" button
2. Select a file using the file explorer

Scenario 2 - Download filePrecondition: Already having at least one file in the systemPost-condition: The selected file is downloaded to "Downloads" folder on thelocal PCScenario steps:
1. Select a file
2. Press "Download file" button

Scenario 3 - Use file already in the system from within an applicationPrecondition: Already having at least one file in the system and having a runningapplicationPost-condition: The selected file can be opened in the applicationScenario steps:
1. Select the file to send
2. From the main application window, press "Send file to an application" but-ton.
3. From the dropdown menu select an application to send the selected fileto.
4. Open the file from within an application in a usual way. The file is found inthe folder "ccfeu-files" located in Desktop.

Scenario 4 - Get a file from a running application to the systemPrecondition: Having a running applicationPost-condition: The list of files is updated and changes are presentScenario steps:
1. Save changes to specific folder ("ccfeu-files" located in Desktop)
2. Close the slave application window
3. When the slave application window is closed, then the files are saved to thesystem.

17

PROJECT REPORT

2.3 Look and feel of GUI
By analyzing the use case description scenarios, it was decided to go with anapproach where one window (main window) is responsible for every user inter-action that is not directly interacting with an application running on the slavemodule and all the other windows (slave applicationwindow) interact with a singleapplication running on the slave module and are launched from themain window.Furthermore, as the main window has to have GUI for login and sign up formsand for lists of applications and files, the preferredwindow shape is an elongatedrectangle.As the chosen technologies (section 2.6) allow building the GUI as a webapplication, Bootstrap, a popular CSS framework, can be used. This choice theninspires the GUI designs.This section shows mockups of the GUI design and describes the thinkingbehind them. Figures in this section are cropped to save space.The user manual for the system can be found in appendix D.
2.3.1 Main window
Main window has GUI for the user to login or create an account, applicationsview and files view. By default it is a rectangular window with an aspect rationof 2:3 so it is higher than it is wide as this shape is better for showing a list ofitems, such as applications or files.
2.3.2 Login and create account
The login form is shown first when the application is launched and can be seenin figure 3. The create account form is shown in figure 4 and is accessible fromthe login form by clicking the light gray button in the bottom of the form. Createaccount form has a similar button to get back to the login form.Both of the forms require only email address and password, as this is the onlyinformation that is used. The blue button submits the form and if the submittedinformation is incorrect — in the case of a login it is a nonexistent combinationof the email address and password and in the case of creating an account it isan email address for which an account already exists — relevant error messageis shown above the submit button.In a production ready system, more information would be required when cre-ating an account. Some additional fields could be a username and a confirm pass-word. Furthermore, when logging in, either email or username could be used.There should also be a checkbox to remember user. Moreover, validation of in-put and measuring of password strength should be done in the create accountform. It should also be verified that the email is valid.

18

PROJECT REPORT

Figure 3: Login GUI within main window

Figure 4: Create account GUI within main window

19

PROJECT REPORT

2.3.3 Applications view
Figure 5 shows an applications view and navigation GUI within themain window.This is the view that appears after a successful login.

Figure 5: Applications view and navigation GUI within main window
It shows a navigation bar in the top having options for either applicationsview or files view and settings icon to the right. The cursor signifies that there isan additional functionality when the element is being interacted with either byhovering over or clicking on it. By clicking on the settings icon a dropdownmenuappears showing an option to logout. The navigation bar is a common elementfor both the applications view and files view.Below the navigation bar is a list of applications that can be launched. Eachitem in the list shows an icon,2 name and version of the application in ques-tion. Additionally, when the item is being hovered over, it shows which operat-ing system it runs on as the same application can be available for many operating

2In the current version, only a placeholder icon is shown.

20

PROJECT REPORT

systems and be slightly different either in their look and feel or the offered func-tionality. Clicking on the item creates a new slave application window with theselected application.
2.3.4 Files view
Figure 6 shows a files view and navigation GUI within the main window. This isthe view that appears after a clicking of "Files" in the navigation bar.

Figure 6: Files view and navigation GUI within main window
The files view shows a list of files that are uploaded in the system togetherwith a couple of buttons to interact with the files. Each item in the list showsa file icon3 and a file name. When the item is clicked, it becomes active and

3As for the icons on the applications view, only a placeholder icon is shown.

21

PROJECT REPORT

the background changes to blue. When a file is selected, it can be downloaded,removed, sent to a running application or renamed. To rename a file, new filename needs to be given in the field next to "Rename file" button. Finally, thereis also a button to upload a new file to the system, that opens a file dialog andallows the user to select a file to upload.
2.3.5 Slave application window
Figure 7 shows a slave application window. The design here is straightforward asit is just an image of the application running on the slave module. The size of theslave application window is variable and depends on the application that is beingrun.

Figure 7: Slave application window
2.3.6 Window controls
It is important to note that because both main window and slave application win-dow are frameless,4 some elements allowing a basic window control are neces-
4Meaning without a chrome as described in Mozilla Contributors (2019a)

22

PROJECT REPORT

sary. Figure 7 is showing elements for closing, minimizing and dragging a win-dow.
2.4 Delimitations
If not stated otherwise, functionality is delimited due to time constraints.There are use cases for an actor called administrator that were delimited. Ad-ministrator is responsible for keeping the system running and would thereforebe a technically trained person. She would control the system via CLI and shewould be able to administer the server suite, including user account and applica-tionmanagement. These use cases are delimited as the need for this functionalityonly arises in production.Security, such as encryption of network communication and hashing of pass-words, is not considered in this project as it only serves a demonstration purpose.Management of account data, such as a possibility to change email and pass-word or delete an account directly from the client application is also delimited.The scenario for sending a file in the system, to an application described insection 2.2.4 does not take into consideration more than one instance of thesame application opened at the same time.Optimally, it would be possible to organize files into folders. This is to allowusers to impose structure on their files and thereby become more productivewhen working with the system. However, this feature is delimited.The optimal system would also support streaming audio from the client’s mi-crophone as well as video from the client’s webcam to the slave module in orderto increase the number of supported applications, as webcam and microphoneare an integral part of some applications, and as such these applications wouldnot be usable without this functionality. However, the specified functionality isnot a part of this project.Another element for the system to be considered production ready is thepossibility to resize the slave application window. However, as this is a usabilityfeature and not a feature that is necessary to show the feasibility of the system,this is not a part of this project.
2.5 Domain model
A list of domain entities that comprise the domain model are identified from theuse case descriptions in section 2.2:

1. File
2. Application
3. User Account
4. Client

23

PROJECT REPORT

These entities can then be modeled in a domain model diagram.

Figure 8: Domain model
Figure 8 shows that the client runs applications,5 that in turn uses files. Fur-thermore, the client also makes use of a user account that owns files.

2.6 Chosen technologies
Having completed the analysis of what the solution must be able to do, sometechnologies have been settled on as the main technologies. These are listedbelow together with a short description as well as a reason for being chosen.

1. C# .NET Core
• .NET Core is a general purpose cross-platform programming frame-work.
• Chosen because the project team has much experience with .NETand at the same is a great tool for the job at hand.

2. Electron
• Framework that allows the use of web technologies for developmentof native cross-platform applications. A longer description of Electronis in section 3.2.1.
• Chosen because it allows creating cross-platform applications froma single code base as well as a pilot project to try out how Electronworks in a project.

3. Docker
5Applications running remotely

24

PROJECT REPORT

• System that makes it easy to containerize software to simplify de-ployment and management of applications. A longer description ofDocker can be found in section 3.4.2.
• Chosen both as a pilot project and because of the containerizationthat Docker facilitates.

4. NetMQ
• NetMQ is amessage queue, network communication library, that sup-ports asynchronous messaging. A longer description of NetMQ canbe found in section 3.3.1
• This technology was chosen because it is made for .NET, as well asprofessional interest from one of the team members.

3 Design
This section of the report covers the system design, including a short descriptionof specific technologies used to fulfill all the use cases and the non-functionalrequirements. It is separated into four sections.The first section 3.1 describes the overall system design.Section 3.2 describes the design of the frontend. That includes both GUI andcommunication with the backend.Section 3.3 describes the design of the middleware that is used to facilitatethe communication between the nodes.Section 3.4 describes the design of the backend. That is how the differentparts of the backend are designed as to separate out the concerns of the serversuite into independent units.
3.1 Overall system design
The overall system architecture can be seen in figure 9. The domain entities fromfigure 8 can be mapped to their own block in the server suite.That is, the user accounts are stored in the database, for which the access iscontrolled by the database servermodule.The files are stored in the file servermodule, which is also responsible for keep-ing track of file ownership by different accounts and by extension only makingthose files visible to that account.The applications are run by a slave module. Slave-owner servermodule keepstrack of slave modules, their connection information and which applications andoperating system they run.And finally, the client is represented by the client application in figure 9. Here,the client application is responsible for communicating with the servermodules,and the slave application windows are responsible for direct communication withthe slavemodules. It is therefore the responsibility of the slave applicationwindow

25

PROJECT REPORT

to receive images from the slave module and output them to the client applica-tion. Furthermore, it is also the responsibility of the slave application windowsto capture events, such as mouse and keyboard events and send those to theslave module. As such, each slave module has its corresponding slave applicationwindow.The communication between the modules happen using the generic commu-nication library that is described in section 3.3.2. Due to this fact, the commu-nication module of the client application needs to be implemented in C# as theclasses needed for invoking remote methods with the generic communication li-brary are implemented in C#.

Figure 9: Overall system structure
3.2 Frontend design
This section zooms in on the client application from the figure 9. An overall designof the client application is shown in figure 10. It is built using Electron and uses acommunicationmodule that communicateswith the server suite using the genericcommunication library. These parts are described individually in the subsequentsections.

26

PROJECT REPORT

Figure 10: Client application overall design
3.2.1 Electron
Electron is a modern framework developed by GitHub (Electron, 2019a) for cre-ating native cross-platform applications with web technologies like JavaScript,HTML, and CSS. It accomplishes this by combining Chromium and Node.js intoa single runtime. The resulting app can be packaged for Windows, Mac andLinux. It is used by Slack, Discord, Visual Studio Code and many more applica-tions (Electron, 2019b).Before diving further into the details, the two process types available in Elec-tron need to be discussed. They are fundamentally different and important tounderstand.An Electron app always has only one main process which can display GUIby creating web pages. Each web page in Electron runs in its own rendererprocess. The two processes can communicate with each other using ElectronInter-Process Communication (IPC) described in Electron (2019c) and Electron(2019d).Electron and its main and renderer process and their IPC can be seen on theleft side of figure 10. Renderer process is responsible for rendering both themainwindow (which is also the startup window) and the slave application window(s).The part of the client application using Electron is responsible for showingand managing the GUI, but not for communication with the backend.

27

PROJECT REPORT

3.2.2 Communication module
For communication with the backend a communication module is necessary.Due to the usage of generic communication library it has to be written in C#. Itis responsible for communication with the servermodules and slave module. Thiscommunication is done asynchronously in a callback fashion as described in sec-tion 3.3.2 with the exception of receiving images from the slavemodule for whicha socket connection is used for the highest efficiency.Themain process in Electron communicateswith this communicationmodulevia Electron CGI (Common Gateway Interface6 (Figueiredo, 2019) and, if neces-sary, relays the information to the renderer via the IPC.Electron IPC and Electron CGI are using JSON to transmit the data which issimple to work with in both the Electron part and communication module partof the client application. Sending images is done by just transmitting the bytesand it is the responsibility of the communication module to receive a full imagewhich is saved in a location from which Electron is continually loading a newrefreshed image.Formaintainability purposes, communicationmodule usesNLog (NLog, 2019)heavily to log info from the running program and to ease an identification of apotential problem.
3.2.3 Event capture
The slave application window is responsible for capturing mouse and keyboardevents as described in section 2.2.3. These are delegated to the main processand sent further to the communication module. From there, they are sent to theslave controller where handled by their respective APIs as described in section3.4.7.
3.2.4 Web technologies
Although an Electron application can be created by using pure HTML, CSS andJavaScript, other web frameworks and technologies can be added. There aremany tutorials and boilerplates available that combine usage of Electron withother web technologies (Sorhus, 2019). This tutorial (Vı̄tolin, š, 2019) sets up theproject with TypeScript, webpack, React and Electron CGI. Bootstrap and Sasssupport has been added as well. These technologies are described shortly in thesubsequent paragraphs.
React
React is a JavaScript library for building user interfaces and has affected the over-all design of the frontend themost with its components approach(Facebook Inc.,2019a).
6This module uses this name as it borrows the main idea from CGI, although it is not a full-blownCGI as described in Robinson and Coar (2004)

28

PROJECT REPORT

Building an application with React means creating a lot of components andcreating a logical hierarchical structure from them. These components do notseparate concerns such as view and controller as it is usually done in a designpattern such as MVC, but rather combine them in small manageable chunks.Refer to Hunt (2019) for a more detailed introduction to this topic.
TypeScript
TypeScript is a typed superset of JavaScript that compiles to plain JavaScript(Microsoft, 2019).
webpack
Webpack is used for bundling the source code and other assets (Wikipedia con-tributors, 2019e). It needs to be run after a change to the source code, as itgenerates its own output files that are used in the application while running.Webpack is highly configurable and it allows splitting the source code into smalllogical sections while in the end producing an efficient and standardized codefor the application.
Bootstrap
Bootstrap is the most popular CSS framework for web development (GitHub,2019). The layout utilities and a few components from Bootstrap are used in theproject.
Sass
Sass is a preprocessor scripting language that is compiled into CSS (Wikipediacontributors, 2019b). It supports two syntaxes. The project is using the SCSS(Sassy CSS) formwhich is closer to that of a regular CSS. The project mainly usesvariables and nesting features provided by Sass.
3.3 Middleware design
A custom generic remote procedure call middleware is designed for this system.It is designed to use the message queue framework NetMQ, which is a C# adap-tation of the more widely used ZeroMQ (ZeroMQ, n.d.).In section 3.3.1 the NetMQ framework is expanded upon. It is necessary tounderstand some principles of the NetMQ framework to properly comprehendthe design decisions for the generic communication library.In section 3.3.2 the design and design decisions of the generic communica-tion library are described. This includes how the middleware solves some of therequirements for the system design.In section 3.4.1 it is described how the generic communication library is usedin the design for the communication between the servermodules and the clientapplication.In section 3.4.7 it is described how the generic communication library is usedand extended upon, to design the communication between the client applicationand the slave module. However, this is mostly the same as in section 3.4.1.

29

PROJECT REPORT

3.3.1 NetMQ / ØMQ
As has previously been mentioned, NetMQ is a C# adaptation of the asynchro-nous message oriented message queue library ZeroMQ (ZeroMQ, n.d.). ZeroMQis a message queue as well as a framework for easier creation of applicationsthat communicate through a network. ZeroMQ is a very extensive library andhas many advanced design patters. However, due to the time constraint on theproject, the main functionality that is used is its Request and Reply socket.7 InNetMQ, a socket is an object that behind the scenes can have many networkconnections. That means a server socket in NetMQ, that is bound to a port on amachine, can be connected to by a very large amount of clients. In fact, the onlylimitation is the amount of available ports and the computation power to handlea large amount of requests in a timely manner.When a server socket receives requests frommany different clients, it uses atechnique called fair queuing, which means a request is handled for each clientbefore a second request is handled for any of the connected clients.As has already been stated, mainly RequestSocket and ResponseSocket areused from the NetMQ library. These two sockets represent an active and a pas-sive part of the network connection. The RequestSocket is always the onemak-ing requests, and a ResponseSocket always responds to requests. The NetMQsockets are made as state machines, which means that a RequestSocket can-not send out two messages without receiving a reply to the first request beforesending out the second request. The same goes for the ResponseSocket, exceptit must first receive a request and then send back a reply.The messages that can be sent through these sockets are NetMQMessages.These represent a series of Frames that together make up the message. NetMQhandles the full transport of a message and the programmer does therefore notneed to worry about receiving n number of frames and so forth. The data thatis sent between two sockets is in byte form. However, NetMQ has wrappersfor handling strings without the programmer having to worry about string en-coding. How the messages are structured using several frames in the genericcommunication library is further explained in section 3.3.2.
3.3.2 Generic communication library
The generic communication library is the basis for all the network communica-tion that happens between nodes. The generic communication library can be de-scribed as a piece of asynchronous message oriented middleware.
These technical requirements exist for the generic communication library:

1. A call to a remote method must happen asynchronously
7The sockets in this library do not represent a standard network sockets. The word socket is merelya name that is used, as the design of the framework is inspired by how programmers are used toprogram network applications (Hintjens, 2019).

30

PROJECT REPORT

2. The library must support routing capabilities. That is, it should be possiblefor many nodes to communicate using a central node as a message router.

Technical requirement 1 is required so that a single call does not make a moduleunresponsive. Furthermore, due to a module being unresponsive, CPU time iswasted.Technical requirement 2 is required so that a deployment of the system canbe simplified and for an increased scalability and reduced maintainability.
Sendable objects
Before diving into the design of the generic communication library, the objectsthat can be sent using the generic communication library must be described first.Figure 11 shows the objects that can be sent through the generic communica-tion library. There are three classes — Sendable, Response and BaseRequest —each having a singular purpose. The Sendable base class’s main purpose is to al-low polymorphism, however, it also serves to improve maintainability by havingless code duplication.As can be seen in the figure 11, the Sendable class contains two fields: sen-
derModuleID and callID.The senderModuleID is the ModuleID of the module initiating a request. Amodule gets its ModuleID by registering itself to a BaseRouterModule as can beseen in figure 12, using the method RegisterModule. By registering itself to a
BaseRouterModule, the router module then knows how to send requests andresponses to a given module without having to set up connection configurationfor each module.The callID is generated by the module that initiates a request. It is used sothat the module can know which request a given response is for.As was mentioned in section 3.3.1, the sockets used for the communicationare state machines and cannot send out or receive two messages in a row. Itis possible that NetMQ supports our use case directly with a different designpattern. However, due to time constraints these options were not researched.Therefore, a workaround is employed such that every time a message is handedover to another module, an acknowledgement message is sent back, therebybringing the sockets back in a state where they can send or receive again.

31

PROJECT REPORT

Figure 11: Objects sendable via generic communication library
The class Response is a leaf class and it allows for delivery of the return objectof a remote method call. The return object is stored in a Payload class, which issimply a wrapper for an Object class. There are two reasons for the Responseto be a leaf class. First, it makes it easier to deserialize and second, it is notnecessary to have type safety because when making a specific remote methodcall, the return type is already known and therefore typecasting is trivially done.As the response must always be sent back to the specific module that initi-ated the request, the Response class has a targetModuleID field, which is usedby the BaseRouterModule to forward the response to its destination.The BaseRequest abstract class is made to be inherited from, when creatinga communication library that is based on the generic communication library. Anyclass that inherits from BaseRequest is treated as a request that can be sent toother modules.Because there is a number of unknown classes inheriting from BaseRequest,it is necessary to specify to the library how to deserialize a BaseRequest intothe required subclass. This is done by inheriting from the Encoding class seenin figure 12, which is why the method of the Encoding class is abstract.The BaseRequest class has a targetModuleType field, whereas the Responseclass has a targetModuleID. This is because a request can be handled by anynode as long as it is of the right type, whilst a response needs to be sent back tothe specific module that initiated the request. Furthermore, this way, a modulemaking a request does not need to know the specific moduleID of the modulethat it makes a request to.
Generic communication library architecture
Next, the overall structure of the generic communication library is described. Fig-ure 12 aids in the description of the generic communication library.

32

PROJECT REPORT

Figure 12: Reduced class diagram for the generic communication library
There are three types in this library that any communicating entity can be —

BaseRouterModule, BaseServerModule and BaseClientModule — each being aspecification of the BaseCommunicationModule.
33

PROJECT REPORT

The BaseCommunicationModule has few responsibilities, but it is still impor-tant. For brevity’s sake, its constructor has been omitted in figure 12. However,it takes a ModuleType as an argument.The BaseClientModule is a type of module that can only make requests andget responses. Therefore any module that extends this class represents a clientin a client-server like communication.For a module to handle incoming requests, a module must inherit from Base-
ServerModule, which can both make requests of its own, and also respond torequests made to it.The BaseRouterModule allows other modules to register to it and forwardsboth requests and responses it receives that are not intended for itself.In the case of responses, the router module uses the targetModuleID andlooks up a connection information for that specific module and forwards the
Sendable object there.In the case of a BaseRequest, the BaseRouterModule looks up all registeredmodules of the same type as the targetModuleType and then at random8 for-wards the request to one of these modules.In order to have the responsibility of sending to and receiving from the net-work at a singular location, the ProxyHelper was added. Each module has atleast one instance of ProxyHelper. When the setup method of a ProxyHelperobject is called, it registers itself to the BaseRouterModule that it has been giventhe connection information for. This results in the ProxyHelper receiving a Mod-
uleID from the BaseRouterModule. As has already been stated, this ModuleID isthen used as the sender moduleID for any requests madewith this ProxyHelper.As has already been explained in section 3.3.1, NetMQ works by sending
NetMQMessages. However, to be able to meaningfully serialize and deserializea message, some standard for how a given Sendable object is encoded to anddecoded from a NetMQMessage must be made.The standard used in this library for encoding and decoding Sendable objectis the following. Every NetMQMessage must have exactly two NetMQFrames. Thefirst frame must contain a string that is either the string literal "RESPONSE",or a string that can be used to unambiguously identify the request type, whichmeans a subclass of BaseRequest. The second frame must include an objectencoded to a string using JSON. The string from the first frame can then beused to figure out how to deserialize the JSON object that is stored in frametwo. Having discussed how the encoding works, it is now relevant to discusshow a request can be made.A request can be made using a class that inherits from the BaseProxy. The
BaseProxy serves as a basis for implementing proxies that can be used by anygivenmodule to call remotemethods on a specificmodule. The BaseProxy holdssome protected methods that simplify the code that has to be implemented in aclass that inherits from the BaseProxy. The BaseProxy requires a ProxyHelperwhen it is created because it needs the ProxyHelper to send out the NetMQMes-
sages.
8In production the load-balancing would be more advanced

34

PROJECT REPORT

Furthermore, the purpose of having proxies is to hide some of the complexityin the creation of the Sendable objects. Therefore, for every module inheritingfrom the BaseServerModule, a proxy should be implemented. The proxy shouldnaturally inherit from the BaseProxy. This design is made so that the functional-ity of these modules can be consumed easily by any other module that inheritsfrom the BaseCommunicationModule. Finally, when a response comes back fora request, it is the proxy that is responsible for activating the correct callbackmethod.
Callbacks
When calling a method on a proxy, both the arguments as well as a callbackmethod must be provided.9 Callbacks are used to handle an asynchronous com-munication in the generic communication library. One might ask why the moremodern C# async and await code pattern was not used and there are two rea-sons for this. First, it is only available in a pre-release version of the NetMQlibrary. Second, it is due to time constraints combined with the fact that theresponsible developer has no previous experience with await and async codepattern.
3.3.3 Usage in distributed system
Figure 13 aids in understanding how the generic communication library is used ina distributed system. For the sake of simplicity, a lot of information is left out.The figure should be read in a way that each package is its own process, eachpotentially running on a different machine. It can then be seen how the Base-
ClientModule uses the BaseProxy to call a remote method on the SlaveOwner.The BaseClientModule’s BaseProxy uses the ProxyHelper to send a remotemethod call object to the ServerModule using the RequestSocket.When the remote method call object is received on the ServerModule, it isrecognized as a request that needs to be forwarded, which is done by pickingthe RequestSocket that points to the SlaveOwner and sending the object there.In the SlaveOwner it is identified as a request that needs to be handled andis given to the BaseServerModule by the ProxyHelper. When the request isprocessed, the response object is sent to the ServerModule using the Request-
Socket of the SlaveOwner. Then again, the ServerModule identifies the objectas a response, picks the RequestSocket that can send to the module the re-sponse is designated for, and sends the response there.When the response arrives back at the ProxyHelper of themodule thatmadethe request, the ProxyHelper first identifies which BaseProxy is responsible forthe requestwith the given CallID. Then the response is given to the correspond-ing BaseProxy and here the callback that is connected to the CallID is executedusing the response object.
9Instead of providing a callback, another option is to implement the method so that it polls on a pri-vate variable in the proxy until a response arrives and then returns this value. This would make themethod synchronous. However, it is important to mention that timing out should be implementedsuch as not to wait for a response forever.

35

PROJECT REPORT

Figure 13: Simplified overview of the connections in the distributed system
3.4 Backend design
The design of the backend revolves around the entities that are responsible forthe business logic, referenced to as servermodules. Each servermodule has a singlearea of concern. This separation has been done with consideration to scalabil-ity. One servermodule is responsible for handling the virtual machines that runthe applications (section 3.4.4), another is responsible for handling files (section

36

PROJECT REPORT

3.4.5) and the last one is responsible for database access (section 3.4.6). Fur-thermore, there is also a SlaveController, which represents the business logicrunning on slave modules. However, first an overview of the backend designis given in section 3.4.1, followed by a description of Docker in section 3.4.2.Docker is described as all of the servermodules run inside Docker containers.
3.4.1 Backend design overview
It can be seen in figure 14 how the modules of the backend are using the genericcommunication library. Besides the classes shown in the figure, each class be-low the line, which inherits from the BaseServermodule either directly or in-directly, needs a proxy. In addition, many request classes that inherit from the
BaseRequest have been implemented, as well as some model classes.

Figure 14: Client-to-servermodules communication library inheritance overview
3.4.2 Docker
Docker is a containerization framework (Docker Inc., n.d.[b]). This means thateach application10 in Docker runs in its own container which simulates a con-stant environmentwith all the required dependencies and consistent system set-tings. This ensures that the application always runs the same no matter wherethe Docker container is hosted. In this way, containerization simplifies deploy-ment and management of applications.Docker is used to run all of the servermodules. It was originally intended toalso use Docker for the slaves, it was nevertheless discovered that Docker is not
10Must be a console application and not a GUI application

37

PROJECT REPORT

intended for GUI application containerization. The slaves are therefore realizedas virtual machines. A technique that could be used instead of using virtual ma-chines is App-V (Microsoft, 2018) or X11 forwarding (Business News Daily Staff,2018). However, these were not further explored.A major reason for using Docker is that it provides a consistent environmentfor an application. This eliminates a possible failure point for an application andis important especially in production.The Docker container image also provides a simple package containing ev-erything that the application needs which simplifies work on different part ofthe project as it abstracts away the complexities of the already developed partsof the application in a Docker container (Red Hat, n.d.).
3.4.3 Server module
As has been stated earlier, the ServerModule has the purpose of routing mes-sages to ease deployment, reduce maintenance and increase scalability. How-ever, as these are not major concerns in this project, there are no noteworthydesign decisions to be described.
3.4.4 Slave-owner servermodule
The responsibility of the slave-owner servermodule is, as can be deduced from itsname, tomanage the active slaves and to boot upmore slaves if necessary. How-ever, as this system is only a simplified version of the production ready system,the SlaveOwnerServermodule does not dynamically boot more slaves.The SlaveOwnerServermodule is initialized with the information (includingnetwork information) for the slaves, using system arguments, and the slaves arestarted manually.When the SlaveOwnerServermodule is initialized, it is responsible for han-dling requestsmade to it. First request that can bemade to a SlaveOwnerServer-
module is GetSlave, which returns an object that contains the necessary net-work information for the client application to connect to a given slave module.When requesting a Slave, the primary key of the calling client as well as whichapplication the slave module should be running must be supplied.The second request is a GetListOfApplications request that returns a listof all the applications that are supported. This information is used to show a listof applications on the client application as shown in figure 5.
3.4.5 File servermodule
The area of concern for file servermodule, is to manage everything that has todo with file storage and file access in the system. First, the file ownership isdiscussed followed by a description of the supported remotely callable methods.
File ownership
As the system is designed now, the ownership of the files on the file servermodule

38

PROJECT REPORT

is stored by saving files from a given user into a folder with that user’s primarykey as the folder name.11 In a production ready system, the ownership shouldbe stored in a database. This approach allows for more flexibility and control andmakes it easier to add features such as sharing files.
Remote callable methods
Firstly, the file servermodule has a method called UploadFile. When the fileservermodule receives a request of this type, the request already contains thefile data as a byte array and the filename as a string. The directory location forthe user is based on the primary key that is also sent as an argument. Then fileservermodule checks if a file of that name already exists and if it does it checksthe last parameter of the remote call to check if it should overwrite the file ornot.The second method is GetListOfFiles. It is called from the client applica-tion and it simply returns a list of all the files that the logged in user (the onlyparameter) owns which are displayed to the user as shown in figure 6.The method DownloadFile simply downloads a file from the file servermod-ule. The parameters for this remote call is the file name and the primary key ofthe user.The method RemoveFile takes same parameter as DownloadFile and re-moves the given file from file servermodule.Lastly, the method RenameFile renames a given file to a new file name of thelogged in user which represent the three parameters of this remote method call.
3.4.6 Database servermodule
The DatabaseServermodule is an instance of BaseServermodule, which meansit serves requests made by the DatabaseServermoduleProxy, an instance of
BaseProxy. The specific requests handled by DatabaseServermodule are Login-
Request and CreateAccountRequest. These requests query or insert into adatabase described in the subsequent section.
Database
The database stores only login information of a user in a form of email and clear-text password (Cornell, 2007). The database therefore has only a User table asshown in figure 15.Password is stored in cleartext as all security precautions are delimited. Databasestores only users at this point but it is easy to imagine it could store informationabout the files, applications and slaves running the applications.
11This is obviously not optimal from a security perspective. However, all security concerns in thissystem are delimited.

39

PROJECT REPORT

Figure 15: ER diagram showing the User table
3.4.7 Slave controller
The slave controller runs on a slave and it is responsible for controlling it. The
SlaveController controls the slave by accepting commands from the client ap-plication and forwarding these commands to Python processes that can executethem using the PyAutoGUI API.The slaves are setup as virtual machines thatmust be bootedmanually. Thesevirtual machines are run using Hyper-V, which is a default virtualization softwarethat comes with Windows (Pro/Education).
Communication between client application and slave module
The communication between the client application and the slave module uses thegeneric communication library and its design can be seen in figure 16. It has beendecided that the SlaveController inherits from BaseRouterModule. This hasbeen done because any communication using the generic communication libraryrequests must have a module ID and to get a module ID in the way the libraryis designed, it must be a BaseRouterModule. Since the ClientModule is theactive part and does not receive requests, the SlaveModule was chosen to bethe BaseRouterModule.

40

PROJECT REPORT

Figure 16: Client-to-slave communication library inheritance overview
Remotely callable methods
The SlaveController has a few remotely callable methods that are discussedin this section.The first method Handshake takes a primary key as a parameter. The primarykey is then stored by the SlaveController to use in future calls to the systemon behalf of the user connected to the SlaveController. The method thenreturns a window size of the application running on a slave module that is usedto adjust the size of the slave application window.The method DoMouseAction triggers a specific mouse action on the slavemodule based on the given parameters.The method FetchRemoteFile is called to get a slave module to download afile from the file servermodule as tomake a file from the file servermodule availableto the application running on the slave module.Lastly, the method SaveFilesAndTerminate is intended to be called whenthe client application is done using the slave module. The SlaveController uponreceiving this method call saves the files that have been downloaded or updatedto the file servermodule and then terminates.
PyAutoGUI
PyAutoGUI is described first as it is used in many of the APIs described in the fol-lowing sections. Since .NET Core was chosen (see section 2.6), it is necessary to

41

PROJECT REPORT

use another technology for working with the screen, mouse and keyboard. Thisis the case because .NET Core does not assume the existence of aforementionedinput/output devices. The technology that is chosen to handle these capabilitiesis Python using the PyAutoGUI library (Sweigart, 2019).PyAutoGUI is a library that is intended for automating GUI tests, and there-fore has capabilities for screen capture, mouse and keyboard control. The com-munication between the Python process and the SlaveController is realizedwith a standard TCP connection, sending commands and arguments as strings.For simplifying the startup process, the SlaveController is responsible for start-ing the Python processes.
Mouse control
The mouse control API supports the need to have scenarios actions specified insection 2.2.3. It does this by adding a single remotely callable method to theslave controller. This method accepts an object as an argument. By using thisargument it is possible for the slave controller to determine which of the mouseactions listed below should be executed:

• Left mouse button down
• Left mouse button up
• Right mouse button down
• Right mouse button up
• Mouse move
Thismethod then queues up themouse action that is to be sent to the Pythonprocess that runs PyAutoGUI for controlling the mouse, when it is ready for thenext action.

Keyboard control
Controlling the keyboard on the slave module is done using PyAutoGUI, whichsupports both key down and key up events. For a slave application window tosend a key down or key up command to the slave module, there is only a singleremotely callable method called DoKeyboardAction. This method takes a stringthat represents the key and a boolean indicating if the action is key down or keyup.When the slave controller receives a DoKeyboardAction, it stores it to a queueof keyboard actions to execute and a response is sent back to the slave applica-tion window. Running in a separate thread is a loop that continuously dequeuesitems from the queue of keyboard events and sends the dequeued item, using aTCP connection, to a Python process that executes the command.
Screen capture and image sender
Screen capture can be approached from multiple stages of implementation dif-ficulty. A standard solution without any proprietary technology is streaming

42

PROJECT REPORT

a video encoded by one of the most used codecs (such as VP9, H265, AV1(Wikipedia contributors, 2019d)) with WebRTC (Mozilla Contributors, 2019b).Streaming a compressed video as compared to streaming compressed images isalways going to be more efficient in terms of the data necessary for a certainquality because of the additional processes that can be applied only to a video,such as block motion estimation (Isikdogan, 2018). Using WebRTC seems to bethe best choice to achieve the lowest latency (Unreal Streaming Technologies,2019). The act of capturing the desktop screen and encoding it to a video canbe done by a tool such as FFmpeg (FFmpeg contributors, 2019). Additionally,this solution could also easily bundle the audio stream from the application onthe slave module as a part of the video.However, this solution requires a specific knowledge and quite a lot of re-sources. Therefore a more straightforward solution of using PyAutoGUI to takescreenshots as JPEGs and sending these to the client application was imple-mented.In the production ready system, technologies such as App-V or X11 forward-ing could be used for interacting with the GUI running on the slavemodule. How-ever, due to the scope constraints on this project, there simply has not beenenough resources to look into the viability of these technologies.To reduce latency and increase throughput of images, the Python image cap-ture sends the images directly to the client application through a regular TCPconnection. The client application gets the connection information to the Pythonimage capture process from the slave-owner servermodule and connects to it. Theprotocol for sending the images through the TCP connection is then as follows.First, an integer, containing the size of the image that is to be sent, is convertedinto bytes and those are then sent through the TCP connection. Next, the imageis read into memory as a byte array and is sent via the TCP connection as well.For receiving the images, the reverse process should naturally be followed. Thatis, first read the bytes corresponding to an integer and use the integer value todetermine how many bytes to read. Now read the bytes and then save them toa file. More about the saving process follows in section 4.1.1.

43

PROJECT REPORT

4 Implementation
This section shows a few code listings from the project related to a certain topicand describes them in detail. For brevity’s sake, the code listings are shortened.Full source code can be found in appendix B.
4.1 Frontend
The frontend implementation describes image receiver in detail and shows atypical usage of React in the project.
4.1.1 Image receiver
This section focuses on the image receiver from figure 10, specifically the usageof a regular TCP socket for performance considerations and how are the imagesreceived and used in the slave application window.The communicationmodule uses a TCP connection for receiving images. Thisis the only place within the project where a low level TCP connection is useddirectly. The reason to use a TCP connection here is for better performance.However, this entails working with the byte buffers and designing the protocolin such a way as to ensure a valid image transmission. The image size needs to betransmitted first so that a byte buffer of an appropriate size can be instantiatedand afterwards filled with the image data.The image data then needs to be stored to an image file which the slaveapplication window can show. The slave application window has an interval setwhich refreshes the image as shown in code listing 1. This means that the slaveapplication window can read the image at any time, even when the image is beingwritten to by the image receiver which can result in the slave application windowshowing a broken image icon shown in figure 17.
setInterval (() => this.updateImage (), 50); // time in ms

Listing 1: Slave application window interval for updating an image

Figure 17: Broken image icon (McKalin, 2018)
To prevent this, the image data are stored from the byte buffer to a buffer fileand only when this is complete, this buffer file is copied to an image file that isbeing shown by the slave application window. Note that this does not fully solve

44

PROJECT REPORT

the problem as the slave application window can still read the image file whenthe buffer file is being copied over. However, it reduces the chance of the slaveapplication window reading the image file while it is in a non-readable state andwould produce the broken image icon.
4.1.2 React
React greatly facilitates building of single-page applications. As Facebook Inc.(2019c) describes, by updating the state variable, React re-renders the compo-nent. Furthermore, as described in Facebook Inc. (2019b) it only updates partof the DOM that has been changed. As an example, the main window decideswhether to render a login form (figure 3) or an applications view (figure 5) basedon a loggedIn state variable. When it is changed, React re-renders the viewaccording to the code listing 2.

1 var toRender;
2 if(this.state.loggedIn) {
3 toRender = this.GetAfterLoginView ();
4 } else {
5 toRender = this.GetLoginView ();
6 }

Listing 2: Selective rendering based on loggedIn variable
Feature flag
As it is written in the code listing 2, login form is always going to be shown firstwhen the application launches. In the case when a developer is not workingon a login functionality, he does not need to see it. For that case a feature flag(Wikipedia contributors, 2019a) that can disable the login functionality has beenimplemented and used as is shown in the code listing 3.

1 var toRender;
2 if(FeatureFlags.AllowLogin) {
3 if(this.state.loggedIn) {
4 toRender = this.GetAfterLoginView ();
5 } else {
6 toRender = this.GetLoginView ();
7 }
8 } else {
9 toRender = this.GetAfterLoginView ();

10 }

Listing 3: Usage of a feature flag

45

PROJECT REPORT

4.2 Middleware
This section covers some interesting implementation that is based on section3.3.
4.2.1 Encoding
To be able to send responses as well as requests between the different nodesin the system, these messages need to be serialized and deserialized. As hasalready been discussed, the communication between the nodes is handles byNetMQ. However, NetMQ can only handle objects of type NetMQMessage. Thepurpose of the class discussed in this section is therefore to serialize and dese-rialize object to and from NetMQMessage object, respectively.In code listing 4, the Encoding class can be seen with an abstract DecodeJ-
sonToSpecificRequestmethod and two concrete — DecodeIntoSendable and
EncodeRequest — methods. The abstract method is called from the. DecodeIn-
toSendable method.

1 public abstract class Encoding
2 { // several methods are hidden
3
4 protected abstract BaseRequest DecodeJsonToSpecificRequest(
5 string specificMethodID , string jsonString
6);
7
8 public Sendable DecodeIntoSendable(NetMQMessage message)
9 {

10 var first = message.Pop().ConvertToString ();
11
12 if (RESPONSE_PREFIX.Equals(first))
13 {
14 return TryDecodeJson <Response >(
15 message.Pop().ConvertToString ()
16) ;
17 }else if (ACK_RECEIVE.Equals(first))
18 {
19 return TryDecodeIntoAckReceived(message);
20 }
21 else
22 {
23 return DecodeJsonToSpecificRequest(
24 first , message.Pop().ConvertToString ()
25);
26 }
27
28 public static NetMQMessage EncodeRequest(
29 BaseRequest request
30)

46

PROJECT REPORT

31 {
32 var message = new NetMQMessage ();
33 message.Append(
34 new NetMQFrame(request.SpecificMethodID)
35);
36 message.Append(
37 new NetMQFrame(EncodeToJson(request))
38);
39 return message;
40 }
41 }

Listing 4: Sample of the Encoding class
EncodeRequest is used to build an object of the type NetMQMessage from anobject of a class that inherits from BaseRequest. As can be seen in the codelisting 4, the building of the message is done by creating the message object andthen appending two frames. The first frame is built using a string that is uniqueto the type of the request. The second frame is the request object encodedinto JSON. Having finished building the NetMQMessage, it is returned and sent toanother node of the system.
DecodeIntoSendable is used on the receiving end, so its purpose is to de-code the NetMQMessage into an object of a class that inherits from BaseRequest.The only assumption made by this method is that the NetMQMessage, that ispassed as an argument, contains data for an object of type Sendable. From hereit checks the content of the first frame. The content is used to discover whetherthis message contains data for an object of type Response or BaseRequest. Ifan object of type Response is contained, it is decoded. Otherwise, the method

DecodeJsonToSpecificRequest is called. This method is implemented in a classinheriting from Encoding and here a switch determines the specific type of the
BaseRequest using the string of the first frame, and creates an object of thefound type from the JSON in the second frame.
4.2.2 Middleware library
This section discusses some of the implementation that is used in the invokingof remote requests and handling the response that comes back.First, code listing 5 shows the code that is required to make a remote methodcall available in a proxy. The necessary code to make a method callable remotelyis quite simple as shown.The request is represented by a class (RequestGetListOfFiles) for whicharguments needed for the remote method call must be set. In this case the Pri-
maryKey field needs to be specified.Furthermore, in code listing 5, threemethods are called: SetStandardParam-
eters, WrapCallBack and SendMessage. SetStandardParameters is a methodthat just sets some arguments used in routing and is therefore not that usefulto have a deeper look at. However, the other two methods are described in

47

PROJECT REPORT

more depth. Furthermore, the method ReceiveSendable is also elaborated on.However, this method is not called in code listing 5.
1 public void GetListOfFiles(PrimaryKey pk, Action <List <

FileName >> callBack)
2 {
3 var request = new RequestGetListOfFiles ();
4
5 request.PrimaryKey = pk;
6
7 SetStandardParameters(request);
8
9 var wrappedCallback = WrapCallBack <List <FileName >>(

callBack);
10
11 base.SendMessage(wrappedCallback , request);
12 }

Listing 5: Implementation of proxy method for remote method invocation
The method WrapCallBack that is shown in code listing 6, is the first methodto be discussed. To clearly understand the purpose of this method, it helps tolook back at code listing 5. Here it can be seen that when calling a remotemethod through a proxy, a callback methodmust be provided. This callback is an

Action and the generic type parameter is of the type that is returned by the re-mote method. To store these actions easily, they need to have the same generictype parameter. This is where the method WrapCallBack comes into play. Thismethod takes an Action object with any generic type parameter, as long as thisinherits from a class and returns an Action object that takes a Response objectas argument. WrapCallBack method typecasts the Payload from the Responseinto the type needed by the original Action and invokes that original action withthe typecasted argument.
1 // method found in class BaseProxy
2 protected static Action <Response > WrapCallBack <T> (
3 Action <T> callBack
4) where T : class
5 {
6 return
7 (response) =>
8 {
9 var thePayload = response.Payload.ThePayload;

10 if (thePayload is JArray _jArray)
11 {
12 response.Payload.ThePayload =
13 _jArray.ToObject <T>();
14
15 }

48

PROJECT REPORT

16 else if(thePayload is JObject jObject)
17 {
18 response.Payload.ThePayload =
19 jObject.ToObject <T>();
20 }
21
22 T obj = response.Payload.ThePayload as T;
23
24 if(null == obj)
25 {
26 throw new Exception (); // shortened
27 }
28 callBack.Invoke(obj);
29 };
30 }
31 }

Listing 6: WrapCallBack method
The code listing 7 shows the method SendMessage. It is the last step before amessage is sent off to another system node. The SendMessagemethod adds the

CallID with an object of type BaseProxy. This is done so that when a responsearrives at the ProxyHelper it can use the CallID to lookup which object shouldreceive the response object. After this the method simply encodes the requestto a NetMQMessage, and sends that object off to the BaseRouterModule that this
ProxyHelper is connected to.

1 // method found in class ProxyHelper
2 public void SendMessage(
3 BaseRequest message
4 , BaseProxy baseProxy
5)
6 {
7 callIDToResponseHandler.Add(
8 message.CallID.ID
9 , baseProxy

10);
11
12 var req = Encoding.EncodeRequest(message);
13 this.outTraffic.SendMultipartMessage(req);
14 } // shortened

Listing 7: Method SendMessage

The method ReceiveSendable, which can be seen in code listing 8, is calledfrom a thread, that is only responsible for running this method. Because thismethod is the only code that this thread runs, it is also the reason why there isan infinite loop. First, the method binds a NetMQResponseSocket to a port. Fromhere the infinite loop starts. Next, receive an object which can either represent arequest or a response. This code listing only shows code relevant to the response
49

PROJECT REPORT

part. Here it is checked if the module receiving the response is a router moduleand if the response is meant to be received by another module. If this is the case,the object is sent off to another method to be routed to its destination. If theresponse has arrived at the right location, the CallID is used to lookup which
BaseProxy holds the callback for this response and then the object is forwardedthere. From here the callback is invoked, and this is how the remote methodinvocation flows in a BaseCommunicationModule.

1 // method found in class ProxyHelper
2 public void ReceiveSendable(
3 Encoding customEncoding
4 , Port portToListenForIncommingData
5)
6 { // method is shortened
7 ResponseSocket inTraffic =
8 new ResponseSocket(
9 "tcp://" + "0.0.0.0:" +

10 portToListenForIncommingData.ThePort
11)
12 ;
13
14 while (true)
15 {
16 // receive message
17 var message =
18 inTraffic.ReceiveMultipartMessage ();
19 var sendable =
20 customEncoding.DecodeIntoSendable(message);
21
22 if (sendable is BaseRequest _request)
23 { // shortened , relevent when receiving requets
24 }
25 else if (sendable is Response response)
26 {
27 if (baseModule is BaseRouterModule _router
28 && response.TargetModuleID.ID != ModuleID.ID
29)
30 {// routing
31 _router.HandleSendable(response);
32 }
33 else
34 {
35 var id = response.CallID.ID;
36 if (callIDToReponseHandler.ContainsKey(id))
37 { // response to a known request
38 callIDToReponseHandler[id].

HandleResponse(response);
39 }
40 }

50

PROJECT REPORT

41 }
42 }
43 }

Listing 8: Method ReceiveSendable

5 Test
The desired level of testing for this project is positive testing (GURU99, n.d.[a]),due to the nature of this project being to develop a prototype. Positive testingmeans that the desired outcome of the test is to show that it is at least possibleto achieve the goal of a given use case scenario. Almost no effort was spent onnegative testing (Nadig, 2019), which would be trying to break the program andto find out how robust the application is with managing faulty input.In the ideal case, the testing should follow the testing pyramid (Vocke, 2018),which means most tests are unit tests, fewer tests are broader reaching integra-tion tests and the least amount of tests are automated GUI tests. There are twomain reasons why no time has been spent on developing the automated tests.First, the project in its scope is still fairly small and short. Spending timeon automated tests makes sense only in the long term. This is because the mainvalue gained from automated tests is to verify that changes to code do not breakexisting functionality and meet a certain quality.Second, the nature of this project is such that most of the sensible testing isin form of integration testing requiring more complex setup. Such an automatedintegration testing is time demanding to create. Since they are more costly tocreate and the value gained from them is relatively small, they are not done inthis project. By comparison, the individual units of the project, for which unittests could be written, are simple. As such, the tests in this project only consistof manual (user acceptance) tests (GURU99, n.d.[b]).The setup while testing is that everything runs on the same physical com-puter. The servermodules are launched together using Docker Compose.12 Theslave module is running in a Hyper-V virtual Windows 10 machine and the clientapplication is running on localhost.
5.1 Test of use cases
In this section, the tests for each of the scenarios from all of the use cases fromsection 2.2 are described. The steps of the scenarios are used as a test specifi-cation, and the post-condition is used as the expected observable outcome.The use cases have need to have and nice to have parts. The need to have partsare tested in a structured manner, using the use case scenario steps. The nice tohave parts are tested in an exploratory manner.
12Docker Compose, is a way to run several Docker images "together" where routing is done withIDs instead of static IPs like in DHCP (Docker Inc, n.d.[a])

51

PROJECT REPORT

Below is a test of a full use case that has been copied from appendix A toshowcase how the testing of the use cases has been done.A table of all the test results (excluding the results of nice to have scenarios)can be seen in a table in section 6.1.
Test of use case: Control a running application
This use case has 2 defined need to have scenarios, which are tested one by one.
Test of scenario 1 - Use of left and right mouse buttons, both up and downevents
Precondition: Having launched a specific applicationExpected outcome: See that the mouse events were activated
Test steps:

1. Hover the mouse above the slave application window
2. Press down on either left or right mouse button
3. Optional: move the mouse
4. Release the mouse button to activate the up event

Executed steps:
1. The application Paint is used for this test
2. Move the mouse above the Pencil tool
3. Press left mouse button down
4. Release left mouse button
5. Observe that the tool got selected
6. Move the mouse such that it is above the "Home" tab
7. Press right mouse button down
8. Release right mouse button
9. Observe that the context menu appears

Observed outcome: It was observed that both the left and the right mouse but-ton actions occurred.
Test of scenario 2 - Keyboard control - Character keys, enter and backspace,both down and up events
Precondition: Having launched a specific application and being in a state wheretyping on the keyboard produces an observable outcome

52

PROJECT REPORT

Expected outcome: See that the expected key output occurred
Test steps:

1. Press key
2. Release key

Executed steps:
1. The application Paint is used for this test
2. The Text tool is selected from the toolbar
3. Create a text field by left clicking on the canvas
4. Enter the following pieces of text to demonstrate that every character keyis working

(a) " the quick brown fox jumps over the lazy dog " (Wikipedia contribu-tors, 2019c)
(b) " THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG "
(c) " 1234567890-= "
(d) " !@#$%ˆ&*()_+ "
(e) " []|<>{}\;’,./:"?`~"

5. Furthermore, <Enter> and <Backspace> were also tested using the Texttool by typing <Enter> to create a new line and <Backspace> to delete thenew line
Observed outcome: All of the keys worked and the test can therefore be deemeda success
Test of nice to have - Control a running application:

1. Continuous mouse position update
• This was tested by drawing a circle in Paint. It was found that a circlecan be drawn. However, it appears that the mouse position is notupdated that often and therefore the circle tends to look more like apolygon.

2. Scrolling
• UsingWordPad as the test application it was found that scrolling doesnot work

3. All remaining keyboard keys, both down and up events

53

PROJECT REPORT

• The following keyboard commands were tested in WordPad:
– <Ctrl>+<S>, triggered a save dialog window
– <Page Up> worked
– <Tab> worked
– <F10> worked
– <Insert> worked
– <Delete> worked
– <Esc> worked

4. Resize the slave application window
• It was not found possible to resize the slave application window.

5. Changing the local cursor so it matches the one on slave module
• Did not occur during testing

5.2 Test of non-functional requirements
Besides use cases with scenarios, there are also non-functional requirements forthis system. Aswith the test of the use case scenarios, the test results can be seenin a table in section 6.1. The tests of non-functional requirements are describedbelow.
5.2.1 Non-functional requirement 1 (Windows 10)
The first non-functional requirement to be tested is "the client application mustrun on Windows 10". This is somewhat trivial to test. The step to do this test isto be on a Windows 10 machine and try to run the client application. This testcompleted with a success.
5.2.2 Non-functional requirement 2 (CPU utilization)
The non-functional requirement that is tested here is "the client applicationmustbe able to run on a low-end laptop CPU with an average CPU Mark score of4967 (PassMark, 2019) with three concurrent client applications running, neverexceeding 30% utilization".This test is conducted on a computer with a CPU having exactly the CPUMark score specified in the non-functional requirement. This computer runs onlythe client application. Another computer runs all of the server suite, including thethree slave modules. The applications that are used here are two instances ofPaint and one instance of WordPad.The result of the test was that running of the client application averagedaround 29% to 35% CPU usage. Therefore, this requirement cannot be statedas passed. However, as it is not far off, it can be said with some certainty that itwould be possible to bring the CPU utilization under the 30% threshold.

54

PROJECT REPORT

5.2.3 Non-functional requirement 3 (command delay)
The non-functional requirement that is tested here is "the delay from amouse orkeyboard command given until the result of execution being shown in the slaveapplication window must never exceed 3 seconds".Two tests were performed as a part of this non-functional requirement. Onewhere the keyboard was the focus of the test and another test where the focuswas on the mouse.WordPad was used for testing the keyboard. The text was typed at a tempoof approximately 3 chars per second for about 20 seconds. It was observed thatit took longer than 3 seconds for the final character to be displayed in the slaveapplication window.Paint was used for testing the mouse. Here 20 lines were drawn over theperiod of 10 seconds using the Pencil tool with one down and one up event foreach line. And again after drawing the last line, it took more than three secondsbefore it appeared.It is important to mention that the first action actually does happen withinthe first three seconds. However, the commands are executed slowly and thecommands queue up so the last command in the queue gets executed with asignificant delay.

55

PROJECT REPORT

6 Results and discussion
6.1 Table of test results
Test results of nice to have scenarios are not included in the table of test results.
Scenario name Passed/Failed
Use case: Manage account
Create account Passed
Login to account Passed
Logout of account Passed
Use case: Launch a specific application
Launch a specific application Passed
Use case: Control a running application
Use of left and right mouse buttons, both up and downevents Passed
Keyboard control - Character keys, enter and backspace,both down and up events Passed
Use case: Manage personal files in the system
Upload file Passed
Download file Passed
Use file already in the system from within an application Passed
Get a file from a running application to the system Passed
Non-functional requirement:
"The client application must run on Windows 10" Passed
"The client applicationmust be able to run on a low-end lap-top CPU with an average CPU Mark score of 4967 (Pass-Mark, 2019) with three concurrent client applications run-ning, never exceeding 30% utilization"

Failed

"The delay from amouse or keyboard command is given un-til the result of execution being shown in the slave applica-tion window must never exceed 3 seconds"
Failed

56

PROJECT REPORT

6.2 Discussion of test results
As it can be seen in the table in section 6.1, all of the use case tests passed,however, two of the non-functional requirements did not. One thing to notehere is that there are several more nice to have tests that failed which are notincluded in this section.
6.2.1 Discussion of failed non-functional requirement 2 (CPU utilization)
The first test that failed is a non-functional requirement that states the CPUutilization of the computer that is running the client application must never ex-ceed 30%. The test showed the utilization to be hovering around 29% to 35%.However, as the team did not focus on optimization, it is conceivable that thisrequirement is easily achievable.A clear opportunity for improvement of both quality and performance is af-forded by implementing video streaming, as the current solution realized withthe PyAutoGUI Python module is not very efficient. The screen capture wouldbe much more efficient and smooth as a video stream as mentioned in section3.4.7. This could be done using FFmpeg (FFmpeg contributors, 2019).
6.2.2 Discussion of failed non-functional requirement 3 (command delay)
The second test that failed is a non-functional requirement that states "the delayfrom a mouse or keyboard command is given until the result of execution beingshown in the slave application window must never exceed 3 seconds". This non-functional requirement ties in with the use case "Control a running application"as it is the performance of the scenarios in this use case that is tested in the non-functional requirement. Here both of the need to have scenarios associated withthe use case passed. However, from a user’s perspective the verdict might differ,which is expressed by the failure of the non-functional requirement.The root cause of the slow execution speedwas determined to be that PyAu-toGUI is rather slow. Or more specifically, PyAutoGUI cannot execute com-mands as fast as they are sent to the slave module. This causes the commands toqueue up and therefore, if several commands are given in short succession, thedelay exceeds 3 seconds. However, if there are no commands queued and justa single command is issued, PyAutoGUI is able to execute this command withinthe 3 seconds time period. Nevertheless, since the non-functional requirementstates that the delay must never exceed 3 seconds, the non-functional require-ment is stated to fail.The fact that PyAutoGUI executes commands slowly is also what led to thedesign decision to have the mouse location update once every second, as it oth-erwise got very easily overwhelmed with commands to execute. Therefore tomake this non-functional requirement pass, another technology would have tobe used to control both the mouse and the keyboard on the slave module.

57

PROJECT REPORT

6.3 General discussion
It is noteworthy that all of the need to have parts of the use cases have passedtheir test. This means that the system now has all of the core functionality thatwas expected at the outset of this project. It must be brought forth that thesoftware developed here is not yet a minimum viable product (Technopedia, n.d.)as many actions either cannot be performed, are unsecure or too slow."Delete account" nice to have scenario can serve as an example of what is stillmissing. Such a functionality is not necessary for demonstrating the feasibilityof the envisioned system. However, the situation changes once the productionready system is considered.Another functionality that is missing is that of streaming the audio from theslave module to the slave application window. This is something that proves diffi-cult with the currently used virtualization platform Hyper-V as it does not sup-port creation of virtual sound cards. It is therefore impossible to capture soundfrom the slavemodule as there is no virtual sound card for the sound to be playedon and captured from. It would therefore be necessary to find a third party toolthat can generate virtual sound cards or completely move to another virtualiza-tion platform.An example of an action that currently happens too slow is a continuousupdate of the mouse location. As described in section 5.1, because the mouselocation is updated only once every second, the drawing of a circle ends up as apolygon or simply just a line.It should be noted that even though the testing has been done onlywith PaintandWordPad, there is no technical obstacle that would prevent the system fromworking with other more demanding applications.

58

PROJECT REPORT

7 Conclusion
The accomplishments of the developed system are summarized below.The developed system allows users to run applications remotely (WordPadand Paint have been tested), although the computational efficiency of the sys-tem is not great, as described in section 6.2.1. The user is able to interact withthe applications with mouse and keyboard, albeit not all of the interactions arepossible and, as mentioned in the section 6.2.2, the system can exhibit quite along delay. The system allows the user to store data and can therefore act as acentral storage for all of the user’s data, even though a primitive one, as elabo-rated in section 2.2.4.The developed system serves as a demonstration of the production readysystem that would address the issues layed out in the introduction. More workoutlined in the nice to have scenarios (section 2.2), delimitations (section 2.4) andproject future (section 8) would have to be put into the project to constitute aminimum viable product.That being said, it is now discussed how the production ready system ad-dresses the disadvantages of the status quo.First, as long as a device is able to use the system, its application use is notconfined by the components it contains. This is an important point worth reiter-ating. As long as even an old power-efficient laptop has Internet access and theenvisioned system installed, the user can work with power-hungry applicationssuch as Adobe Premiere Pro, Autodesk 3ds Max, Trimble SketchUp and similar.Second, the system has the potential to eliminate the need to replace hard-ware because of lacking computational performance. The same need is, how-ever, retained for the reasons of mechanical failure of the device or better hard-ware outside of the computational realm, such as better screen and battery. Thesystem can, however, change the way how computers are used and with that,prevent the migration effort associated with acquisition of a new machine thatis required nowadays.Third, the system allows the user to run applications across different operat-ing systems. This is important because it diminishes the importance of using aparticular operating system. In addition, the system can also be augmented withfeatures valuable for the user, such as password management and file history.Fourth, even a device that relies on the systemwould be idlemost of the time.The point is, however, that this device is comparatively much less powerful thanan averagemachine sold nowadays and the powerful hardware, which is situatedin data centers and runs the actual applications, can be utilized very efficiently.Fifth, the user is bereft of the responsibility to update the application as thisis something the system does in the background and the user is therefore alwaysrunning the most up-to-date software.Lastly, it is important to realize that with the setup the system implements, auser’s setup is not central to his local machine. Instead, it is in the cloud, acces-sible from whichever machine running the system after logging in.At its current stage, the developed system does not meet a single of its afore-

59

PROJECT REPORT

mentioned aspirations. Achieving just one of them is rather challenging and re-quires much more work on multiple elements of the system. Most importantly,the deficiencies discussed in section 6.2 would have to be addressed. However,the developed system represents a solid basis which can be further improved togradually attain its initial ambition.

8 Project future
There are many aspects of the project that would have to be considered and im-plemented to be even a minimum viable product. These include considerationsabout business model, CIA triad (Rouse, 2014) (security and availability), pri-vacy concerns, system scalability, legal matters, supporting more applications,hardware provisioning and additional features. As ElonMusk said (Musk, 2019),“the really hard part that requires a lot of resources is optimizing something pastthe initial prototype phase and bringing it into volume production.”The rest of this section examines these concerns in more detail.
8.1 Business model
If this project would ever be available commercially, it is imagined that the busi-ness model would be based on a monthly subscription fee. After all, many busi-nesses today are going down that path as well. It seems as a good way for boththe customers – for whom the barrier to start using the product is not too great– and for the business itself, which gets a continuous stream of cash that in theaggregate might bring in more profits than any other model.An analysis would have to be performed to decide upon specific details forthe subscription fee, such as:

1. Is there a single subscription type or multiple ones that differ in price andoffered services?
2. Are there any limitations on usage of a subscription (or a particular type),e.g.: maximum offered computation power per month, number of devicesa subscription can be used from or application packs that a subscriptionoffers?
3. What is a reasonable price that, when scaled up, covers the cost and stillprovides a wide profit margin?
4. Can a freemiummodel or otherwise limited free version be provided to getinto a compounding virality loop? (Hoffman and Chestnut, 2019)

8.2 Security and privacy
As in every modern project, security of the system itself and the data it storesneeds to be considered. This project entails more traditional security problems

60

PROJECT REPORT

such as security of database and other data files stored in the system but also amore interesting problem of securing the transmission of video and audio feedand the user’s inputs over the network so the system cannot be misused andabused. Solving this problem is part of privacy concerns as well as only by solv-ing this problem can the user trust the system and know that no unauthorizedperson can get access to his data.
8.3 Availability
Users rely on the system to be available whenever they need so availability isa key for the commercial success of the product. Solving this problem requiresthe system to be stable and efficient in the long run, so the system would haveto better optimized.
8.4 Legal matters
As this system functions only as a bridge to other applications from other com-panies and developers, the obvious legal issue are licenses for the applicationsaccessed by users.
8.5 Hardware provisioning
The applications on slaves and servermodules in the end have to be running onsome hardware. This would be provisioned by one of the providers such as AWS,Microsoft Azure, etc., as is the today’s standard (Amazon Web Services, 2017).Only in the case of performance optimization on the level of hardware and costsavings would it make sense to consider administering own hardware and datacenters.
8.6 Scalability
Scalability means the ability to handle potentially exponentially increasing userbase and therefore load on the system while expanding the capability of thesystem. For the system to scale well, it needs to be properly optimized.This is partly addressedwith the systembeing designed using individualmod-ules that have their concerns separated as described in 3.4. This design allowsthe whole system to scale out as opposed to scale up (Banks, 2014) which is apreferable strategy in the long term. However, more needs to be done in orderto truly allow this kind of scalability.
8.7 Application selection
The more applications the system can support, the more users can become in-terested in using the system. Therefore expanding the selection of availableapplications is important. The goal should be to allow the users to request an

61

PROJECT REPORT

application that is not currently available and the system being able to provide itin a matter of just a few minutes. Therefore, it is inherently tied to the problemof system scalability.
8.8 Additional features
8.8.1 Automatic slave initialization
An important part of the system that is managed manually at the moment is theinitialization of a slave running the requested application. Automation of thishas a high priority and is inherently interlinked with the hardware provisioningdescribed in section 8.5.
8.8.2 Store application configuration
In order to fulfill one of the main aspirations, the system has to be able to storeindividual user’s application configuration and apply it to the initialized applica-tion when it is launched and provided to the user.
8.8.3 Automatic application updates
Another major advantage the system can provide to its users is always usingup-to-date applications without the need to spend any time updating by them-selves. The system would need to update its applications while they are notbeing used. At the same time, the system should still provide the possibility torun an application in a certain version in case the user prefers that version overthe most up-to-date.
8.8.4 Integrated system augmentations
Additionally, the system allows for more augmentation and integration of otherapplications, providing even more benefits to its users.
Integrated file history
One of those integrations is a file history for each file uploaded to the system sothat the user can always go back to the previous version of the file.
Integrated password management
Another integration is that of a password manager which would automaticallyfill-in the login details to other services.

62

PROJECT REPORT

References
Alvarez, M., 2009. The Average American Adult Spends 8 1/2 Hours A Day StartingInto Screens. [Online; accessed 26-August-2019]. Available at: <https://

atelier . bnpparibas / en / smart - city / article / average - american -
adult-spends-8-1-2-hours-day-staring-screens>.Amazon Web Services, 2017. Netflix on AWS. [Online; accessed 02-December-2019]. Available at: <https://aws.amazon.com/solutions/case-studies/
netflix/>.Banks, E., 2014.What does “scale out” vs. “scale up” mean? [Online; accessed 02-December-2019]. Packet Pushers. Available at: <https://packetpushers.
net/scale-up-vs-scale-out/>.Beach, T. E., 2000. Types of Computers. [Online; accessed 09-April-2019]. Avail-able at: <https://web.archive.org/web/20150730182332/http://www.
unm.edu/~tbeach/terms/types.html>.Business News Daily Staff, Sept. 2018. How To Set Up And Use X11 ForwardingOn Linux And Mac. [Online; accessed 27-October-2019]. businessnewsdaily.Available at: <https://www.businessnewsdaily.com/11035-how-to-use-
x11-forwarding.html>.Cornell, D., Oct. 2007. Cleartext vs. Plaintext vs. Ciphertext vs. Plaintext vs. ClearText. [Online; accessed 16-October-2019]. DenimGroup. Available at: <https:
//www.denimgroup.com/resources/blog/2007/10/cleartext-vs-pl/>.Dignan, L., 2019. Top cloud providers 2019: AWS, Microsoft Azure, Google Cloud;IBMmakes hybridmove; Salesforce dominates SaaS. [Online; accessed 09-April-2019]. Available at: <https://www.zdnet.com/article/top- cloud-
providers- 2019- aws- microsoft- azure- google- cloud- ibm- makes-
hybrid-move-salesforce-dominates-saas>.Docker Inc, n.d.(a).OverviewofDocker Compose. [Online; accessed 22-November-2019]. Available at: <https://docs.docker.com/compose/>.— n.d.(b).Docker. [Online; accessed 21-September-2019]. Available at: <https:
//www.docker.com>.Electron, 2019a. About Electron. [Online; accessed 30-September-2019]. Avail-able at: <https://electronjs.org/docs/tutorial/about>.— 2019b. Electron Apps. [Online; accessed 30-September-2019]. Available at:<https://electronjs.org/apps>.— 2019c. ipcMain | Electron. [Online; accessed 30-September-2019]. Availableat: <https://electronjs.org/docs/api/ipc-main>.— 2019d. ipcRenderer | Electron. [Online; accessed 30-September-2019]. Avail-able at: <https://electronjs.org/docs/api/ipc-renderer>.Facebook Inc., 2019a. React - A JavaScript library for building user interfaces. [On-line; accessed 16-December-2019]. Available at: <https://reactjs.org/>.— 2019b.Rendering Elements - React. [Online; accessed 16-October-2019]. Avail-able at: <https://reactjs.org/docs/rendering-elements.html>.— 2019c. State and Lifecycle - React. [Online; accessed 16-October-2019]. Avail-able at: <https://reactjs.org/docs/state-and-lifecycle.html>.

63

PROJECT REPORT

FFmpeg contributors, 2019. FFmpeg -A complete, cross-platform solution to record,convert and stream audio and video. [Online; accessed 22-November-2019].Available at: <https://github.com/FFmpeg/FFmpeg>.Figueiredo, R., 2019. ElectronCGI. [Online; accessed 30-September-2019]. Avail-able at: <https://github.com/ruidfigueiredo/electron-cgi>.Gilbert, B., 2018. The PlayStation 4 continues to dominate as the world’s most pop-ular gaming console. [Online; accessed 09-April-2019]. Available at: <https:
//www.businessinsider.com/ps4-playstation-4-lifetime-sales-
2018-1>.GitHub, 2019. css · GitHubTopics. [Online; accessed 30-September-2019]. GitHub.Available at: <https://github.com/topics/css>.GURU99, n.d.(a). Positive Testing and Negative Testing with Examples. [Online; ac-cessed 18-September-2019]. Available at: <https://www.guru99.com/
positive-and-negative-testing.html>.— n.d.(b).What isUser Acceptance Testing (UAT)?with Examples. [Online; accessed04-December-2019]. Available at: <https : / / www . guru99 . com / user -
acceptance-testing.html>.— 2019. Top 21 Cloud Computing Service Provider Companies in 2019. [Online;accessed 10-October-2019]. Available at: <https : / / www . guru99 . com /
cloud-computing-service-provider.html>.Hintjens, P., 2019. ØMQ - The Guide. [Online; accessed 21-November-2019].iMatix. Available at: <http : / / zguide . zeromq . org / page : all / #The -
Socket-API>.Hoffman, R. and Chestnut, B., May 2019. The Case For Bootstrapping. [Online; ac-cessed 14-October-2019].Masters of Scale. Available at: <https://mastersofscale.
com/wp- content/uploads/2019/05/mos- episode- transcript- ben-
chestnut-.pdf>.Hunt, P., 2019. React: Rethinking best practices. [Online; accessed 30-September-2019]. Youtube. Available at: <https : / / www . youtube . com / watch ? v =
x7cQ3mrcKaY>.Isikdogan, L., 2018.HowVideoCompressionWorks. [Online; accessed 22-November-2019]. Youtube. Available at: <https://youtu.be/QoZ8pccsYo4>.LaMarco, N., 2018. The Average Lifespan for Laptops. [Online; accessed 09-April-2019]. Available at: <https : / / smallbusiness . chron . com / average -
lifespan-laptops-71292.html>.McAfee, A., 2019.More from Less Overview — Andrew McAfee. [Online; accessed05-October-2019]. Available at: <https://andrewmcafee.org/more-from-
less/overivew>.McKalin, V., 2018. Broken image icon in Google Chrome browser. [Online; accessed9-December-2019]. Available at: <https://www.thewindowsclub.com/
broken-image-icon-google-chrome-browser>.Microsoft, Sept. 2018. Application Virtualization (App-V) forWindows 10 overview.[Online; accessed 16-October-2019]. Microsoft. Available at: <https : / /
docs.microsoft.com/en-us/windows/application-management/app-
v/appv-for-windows>.

64

PROJECT REPORT

Microsoft, 2019. TypeScript - JavaScript that scales. [Online; accessed 16-December-2019]. Available at: <https://www.typescriptlang.org/>.Mozilla Contributors, 2019a. Chrome - MDN Web Docs Glossary: Definitions ofWeb-related terms | MDN. [Online; accessed 03-October-2019]. Available at:<https://developer.mozilla.org/en-US/docs/Glossary/Chrome>.— 2019b.WebRTCAPI -WebAPIs |MDN. [Online; accessed 22-November-2019].Available at: <https://developer.mozilla.org/en-US/docs/Web/API/
WebRTC_API>.Musk, E., 2019. Starship Update. [Online; accessed 14-October-2019]. Youtube.Available at: <https://youtu.be/sOpMrVnjYeY?t=3565>.Nadig, S., 2019. What Is Negative Testing And How To Write Negative Test Cases?[Online; accessed 14-November-2019]. Software Testing Help. Available at:<https://www.softwaretestinghelp.com/what-is-negative-testing/>.NLog, 2019. NLog - Flexible & free open-source logging for .NET. [Online; accessed30-September-2019]. Available at: <https://nlog-project.org/>.PassMark, 2019. PassMark - Intel Core i5-6267U @ 2.90GHz. [Online; accessed06-September-2019]. Available at: <https : / / www . cpubenchmark . net /
cpu.php?cpu=Intel+Core+i5-6267U+%40+2.90GHz>.Puget Systems, n.d. Recommended Systems for Adobe Premiere Pro. [Online; ac-cessed 29-November-2019]. Available at: <https://www.pugetsystems.
com/recommended/Recommended- Systems- for- Adobe- Premiere- Pro-
143/Hardware-Recommendations>.Red Hat, n.d. What is Docker? [Online; accessed 04-December-2019]. Availableat: <https://opensource.com/resources/what-docker>.Robinson, D. and Coar, K. A. L., Oct. 2004. The Common Gateway Interface (CGI)Version 1.1. RFC 3875. RFC Editor. Available at: <http://www.rfc-editor.
org/rfc/rfc3875.txt>.Rouse, M., n.d. cloud storage service. [Online; accessed 09-April-2019]. Avail-able at: <https://searchstorage.techtarget.com/definition/cloud-
storage-service>.— 2014.What is confidentiality, integrity, and availability (CIA triad)? [Online; ac-cessed 10-October-2019]. WhatIs.com. Available at: <https : / / whatis .
techtarget.com/definition/Confidentiality-integrity-and-availability-
CIA>.Sorhus, S., 2019.Useful resources for creating appswith Electron - Boilerplates. [On-line; accessed 30-September-2019]. Available at: <https://github.com/
sindresorhus/awesome-electron/#boilerplates>.Sweigart, A., 2019. Welcome to PyAutoGUI’s documentation! [Online; accessed26-September-2019]. Available at: <https://pyautogui.readthedocs.
io/en/latest/>.Technopedia, n.d.What is aMinimumViable Product (MVP)? -Definition fromTecho-pedia. [Online; accessed 04-October-2019]. Available at: <https://www.
techopedia.com/definition/27809/minimum-viable-product-mvp>.Unreal Streaming Technologies, 2019. Unreal Media Server FAQ | What are bestpractices for lowest latency live streaming? [Online; accessed 22-November-

65

PROJECT REPORT

2019]. Available at: <http : / / umediaserver . net / umediaserver / faq .
html#What-are-best-practices-for-lowest-latency-live-streaming>.Vı̄tolin, š, K., 2019. Create a desktop app with Electron, React and C#. [Online; ac-cessed 30-September-2019]. Available at: <https://itnext.io/create-
desktop-with-electron-react-and-c-86f9765809b7>.Vocke, H., 2018. The Practical Test Pyramid. [Online; accessed 14-November-2019]. Available at: <https://martinfowler.com/articles/practical-
test-pyramid.html>.Wikimedia Commons, 2018. File:ISO keyboard (105) QWERTY UK.svg — Wikime-dia Commons, the freemedia repository. [Online; accessed 9-December-2019].Available at: <https://commons.wikimedia.org/w/index.php?title=
File:ISO_keyboard_(105)_QWERTY_UK.svg&oldid=331373586>.Wikipedia contributors, 2019a. Feature toggle —Wikipedia, The Free Encyclopedia.[Online; accessed 2-November-2019]. Available at: <https://en.wikipedia.
org/w/index.php?title=Feature_toggle&oldid=920378491>.— 2019b. Sass (stylesheet language) — Wikipedia, The Free Encyclopedia. [Online;accessed 16-December-2019]. Available at: <https://en.wikipedia.org/
w/index.php?title=Sass_(stylesheet_language)&oldid=929083869>.— 2019c. The quick brown fox jumps over the lazy dog — Wikipedia, The Free En-cyclopedia. [Online; accessed 18-November-2019]. Available at: <https://
en.wikipedia.org/w/index.php?title=The_quick_brown_fox_jumps_
over_the_lazy_dog&oldid=926313765>.— 2019d. Video coding format — Wikipedia, The Free Encyclopedia. [Online; ac-cessed 22-November-2019]. Available at: <https://en.wikipedia.org/w/
index.php?title=Video_coding_format&oldid=927055403>.— 2019e. Webpack — Wikipedia, The Free Encyclopedia. [Online; accessed 16-December-2019]. Available at: <https://en.wikipedia.org/w/index.
php?title=Webpack&oldid=929083977>.ZeroMQ, n.d. ZeroMQ. [Online; accessed 19-September-2019]. Available at: <https:
//zeromq.org/>.

66

PROJECT REPORT

Appendices
A Test of use cases
Test of use case: Manage account
This use case has 3 defined need to have scenarios, which are tested one by one.
Test of scenario 1 - Create account
Precondition: Precondition having launched the client applicationExpected outcome: Get logged into the newly created account
Test steps:

1. Press "Create account"
2. Enter valid required information
3. Press "Create account and login"

Executed steps:
1. Press button "Create account"
2. Enter "test@ccfeu.com" into "Email address" field
3. Enter "password" into "Password" field
4. Press button "Create account and login"
5. Press button with gear icon
6. Observe the email currently logged in is also "test@ccfeu.com"

Observed outcome: It was observed that the client application was logged intothe newly created account, with the email "test@ccfeu.com", by observing theemail address in the settings dropdown menu
Test of scenario 2 - Login to account
Precondition: Having launched the client application and already having createdan account with login information {Email:"admin@ccfeu.com", Password:"pass"}Expected outcome: User is logged in
Test steps:

1. Enter required information
2. Press "Login"

67

PROJECT REPORT

Executed steps:
1. Enter "admin@ccfeu.com" into "Email address" field
2. Enter "pass" into the "Password" field
3. Press button with gear icon
4. Observe the email currently logged in is also "admin@ccfeu.com"

Observed outcome: It was observed that the email "admin@ccfeu.com" was dis-played as the email currently logged into, just as expected
Test of scenario 3 - Logout of account
Precondition: Having launched the client application and be logged into an ac-countExpected outcome: The login form is shown
Test steps:

1. Click on settings menu
2. Click on "Logout" from the context menu

Executed steps:
1. Press button with gear icon
2. Press "Logout"
3. Observe that the login form is now shown

Observed outcome: It was observed that the login form was shown just as ex-pected
Test of nice to have - Manage account:

1. Update account information
• Currently not possible

2. Delete account
• Currently not possible

Test of use case: Launch a specific application
This use case has only 1 defined need to have scenariowhich needs to be tested.
Test of scenario 1 - Launch a specific application

68

PROJECT REPORT

Precondition: Having launched the client application and be logged inExpected outcome: New window is created that after initialization shows the se-lected application
Test steps:

1. Navigate to the list of application
2. Find and click on the desired application

Executed steps:
1. Click the "Apps" button at the top of the client application
2. Click the "Paint" button
3. A new window appeared from which Paint could be used

Observed outcome: A new window appeared showing the application Paint
Test of nice to have - Launch a specific application:

1. Streaming visual representation of the application as a video
• Currently not possible

Test of use case: Control a running application
This use case has 2 defined need to have scenarios, which are tested one by one.
Test of scenario 1 - Use of left and right mouse buttons, both up and downevents
Precondition: Having launched a specific applicationExpected outcome: See that the mouse events were activated
Test steps:

1. Hover the mouse above the slave application window
2. Press down on either left or right mouse button
3. Optional: move the mouse
4. Release the mouse button to activate the up event

Executed steps:
1. The application Paint is used for this test
2. Move the mouse above the Pencil tool

69

PROJECT REPORT

3. Press left mouse button down
4. Release left mouse button
5. Observe that the tool got selected
6. Move the mouse such that it is above the "Home" tab
7. Press right mouse button down
8. Release right mouse button
9. Observe that the context menu appears

Observed outcome: It was observed that both the left and the right mouse but-ton actions occurred.
Test of scenario 2 - Keyboard control - Character keys, enter and backspace,both down and up events
Precondition: Having launched a specific application and being in a state wheretyping on the keyboard produces an observable outcomeExpected outcome: See that the expected key output occurred
Test steps:

1. Press key
2. Release key

Executed steps:
1. The application Paint is used for this test
2. The Text tool is selected from the toolbar
3. Create a text field by left clicking on the canvas
4. Enter the following pieces of text to demonstrate that every character keyis working

(a) " the quick brown fox jumps over the lazy dog " (Wikipedia contribu-tors, 2019c)
(b) " THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG "
(c) " 1234567890-= "
(d) " !@#$%ˆ&*()_+ "
(e) " []|<>{}\;’,./:"?`~"

70

PROJECT REPORT

5. Furthermore, <Enter> and <Backspace> were also tested using the Texttool by typing <Enter> to create a new line and <Backspace> to delete thenew line
Observed outcome: All of the keys worked and the test can therefore be deemeda success
Test of nice to have - Control a running application:

1. Continuous mouse position update
• This was tested by drawing a circle in Paint. It was found that a circlecan be drawn. However, it appears that the mouse position is notupdated that often and therefore the circle tends to look more like apolygon.

2. Scrolling
• UsingWordPad as the test application it was found that scrolling doesnot work

3. All remaining keyboard keys, both down and up events
• The following keyboard commands were tested in WordPad:

– <Ctrl>+<S>, triggered a save dialog window
– <Page Up> worked
– <Tab> worked
– <F10> worked
– <Insert> worked
– <Delete> worked
– <Esc> worked

4. Resize the slave application window
• It was not found possible to resize the slave application window.

5. Changing the local cursor so it matches the one on slave module
• Did not occur during testing

Test of use case: Manage personal files in the system
This use case has 4 defined need to have scenarios, which are tested one by one.
Test of scenario 1 - Upload files
Precondition: Having launched the client application, be logged in and having nav-igated to the ’Files’ tabExpected outcome: The uploaded file appears in the list of files
Test steps:

71

PROJECT REPORT

1. Press "Upload file" button
2. Select a file using the file explorer

Executed steps:
1. Click button "Upload new file"
2. Select file "test.txt" from the desktop of the local computer, using the filepicker dialog window
3. Observe that the file do appear in the list of files

Observed outcome: A file with filename "test.txt" appeared in the list, just asexpected
Test of scenario 2 - Download file
Precondition: Already having at least one file in the systemExpected outcome: The selected file is downloaded to "Downloads" folder on thelocal PC
Test steps:

1. Select a file
2. Press "Download file" button

Executed steps:
1. Click on the file with name "test.txt" in the list of files
2. Click the button "Download file"
3. Navigate to the local computer’s "Downloads" folder
4. Open the file to see that the content is as expected

Observed outcome: The file appeared in the "Downloads" folder with the ex-pected content
Test of scenario 3 - Use file already in the system from within an application
Precondition: Already having at least one file in the system and having a runningapplicationExpected outcome: The selected file can be opened in the application
Test steps:

1. Select the file to send
72

PROJECT REPORT

2. From themain applicationwindow, press "Send file to an application" button
3. From the dropdownmenu select an application to send the selected file to
4. Open the file from within an application in a usual way. The file is found ina designated file location.

Executed steps:
1. The application Paint is used for this test
2. Upload a file "test.png" to the system
3. Select "test.png" file and click the button "Send file to an application"
4. Click "Paint"
5. Using the slave application window do <Ctrl>+O
6. Navigate to "ccfeu-files" folder located in Desktop
7. Open file "test.png"
8. The file from the system can now be used

Observed outcome: It was observed that the file could be used using the slaveapplication window, just as expected
Test of scenario 4 - Get a file from a running application to the system
Precondition: Having performed steps described in "executed steps" of scenario"Use file already in the system from within an application"Expected outcome: The list of files is updated and changes are present
Test steps:

1. Save changes to "ccfeu-files" folder located in Desktop
2. Click to close the slave application window
3. When the slave application window is closed, the files are saved to the sys-tem

Executed steps:
1. The application Paint is used for this test
2. Modify the image using the Pencil tool
3. Press <Ctrl>+S to save the changes

73

PROJECT REPORT

4. Close the slave application window using the cross button in the top rightcorner
5. Download the file
6. Observe the changes made using the slave application window

Observed outcome: It was observed that the changes made using the slave ap-plication window were present just as expected
Test of nice to have - Manage personal files in the system:

1. Rename file in the system
• This was tested by uploading a file "test.txt" to the system. Whenthat was done, the file was selected from the list of files, a new name"test.test" was typed in the text field and the "Rename file" buttonwas pressed and it was observed that the renaming occurred.

2. Organize files in the system using folders
• This is currently not possible

B Source code
Source code can be found in the accompanying .zip and on
https://github.com/cloud-computing-for-end-users

74

PROJECT REPORT

C Project description
See next page.

75

CLOUD COMPUTING FOR END USERS
BACHELOR PROJECT DESCRIPTION

Kenneth Nørholm 254309Krystof Spiller 253812

supervised byPoul Erik Væggemose

11794 characters (not including spaces)
Software Engineering, 6th semesterMay 11, 2019

76

Document versions:
Version Change Date
0.1.0 Initial draft (no sources, one subproblem is beingreevaluated) 2019/04/05
0.1.1 Added sources, clarification of problem state-ment, delimitation section revised 2019/04/11
0.1.2 Added one subproblem about system securityand delimited against it 2019/04/18
1.0.0 Time schedule section updated, small text revi-sions and aesthetic fixes 2019/05/11
1.0.1 Typo fixed. Date and version format changed inregards to team conventions. 2019/09/06

Contents
1 Background description
2 Definition of purpose
3 Problem statement
4 Delimitation
5 Choice of models andmethods
6 Time schedule
7 Sources of information

77

BACHELOR PROJECT DESCRIPTION
1 Background description
If we have a closer look at the current status quo in computing for regular userswe find that the user needs to have their own hardware that does the actualcomputation. One can findmany disadvantages with such an approach.First, the hardware needs to be exchanged every so often, on average every 5years (Durden, 2018), for a new one because of the hardware obsolescence andtherefore lacking computational performance. This will necessarily require sometime to be spent selecting the newmodel and setting it up, as well as paying theupfront cost of the computer. Furthermore the setting up of a new computer canbe a frustration with installing all of the software from the previous machine, andcopying the existing data. In case of laptops it means exchanging thewholema-chine instead of only the parts involved in computationwhich is also unnecessarilywasteful.Second, the hardware the user bought has only a limited computational po-tential or use case that stays the same for the rest of the hardware lifetime. Thismeans that if this hardware has been bought for ordinary office work, one cannotexpect to be able to play the latest games on it as well. On the other hand incase of gaming consoles, which is just another piece of computational hardwaremany people buy (Gilbert, 2018), one cannot expect to be able to do any officework. A lot of hardware is also made for a specific form factor further limitingthemachine’s potential. Consider for example the constrains imposed on laptopmanufacturers.Third, the hardware is tied to a certain operating system that allows to usefeatures and applications available only on that system. Although you can runmany operating systems on one machine, you will nonetheless have a problemif you want to run two applications that are each available only on a differentoperating system.Fourth, the fact that the user and only the user owns and uses this hardwaremeans that it in fact sits idle and unusedmost of the time (Alvarez, 2009). Thisstrategy is wasteful, especially if we consider the relative ease of centralizingprocessing power, which allows for a much higher utilization (Dignan, 2019).Assume a conservative estimate that the hardware is being used for 25% of thetime and stays idle for the remaining 75%. This means that the world needs fourtimesmore hardware than if the hardware would be used non-stop without beingidle.Lastly, if a user does not have the hardware with them, they cannot accesstheir machine and use it. Data sharing services such as Dropbox, Google Drive orMicrosoft OneDrive (Rouse, n.d) allow users to put their data to a cloud, makingthem accessible from every computer with an Internet access. As of now however,a solution that would provide the same comfort accessing a whole user’s setupdoes not exist.This bachelor project looks into a solution that alleviates the aforementioneddisadvantages. A solution that is inspired by historical approach to computationwithmainframeand client (Beach, n.d) andmimics an approachof cloud computing

78

BACHELOR PROJECT DESCRIPTION

services, only in this case directed at end users rather than businesses.

2 Definition of purpose
A purpose of this project is to change the status quo in computation by avoidinglimited computational potential of the hardware and specific use case imposedmainly by the operating system, minimize the initial investment and additionalinvestment of both time andmoney in the future associated with computation,decrease the hardware idle time and reduce environmental impact of hardwareproduction and finally provide access to the user’s environment from any com-puter with Internet connection.

3 Problem statement
Howcanauser1 runanyapplication(s), notwithstanding theOS, simultaneouslyusing the same datawithout buying expensive hardware themselves?
Subproblems:
1. How can the user avoid buying expensive hardware?
2. How can it bemade possible for a user to run any application notwithstand-ing the operating system?

• How can any operating system be supported?
• How can any application be supported?

3. How can the applications share data?
4. How can a user runmultiple applications simultaneously?
5. How tomake the system as responsive as is required for it to be useful?
6. How tomake the system scalable?
7. How can users data be secured?
8. How can the system be secured against unintended use?

1In order to clarify the problem domain, three types of users are considered:Type 1: A content creator starting out could use this system for resource intensive tasks such asvideo rendering and editing.Type 2: A regular computer user who uses their computer for ordinary activities but finds that acomputer is too expensive andwould like to have amuch cheaper option, even if this would requirean Internet connection to function.Type 3: An advanced user that is able to utilize other advantages of the system, such as being ableto access their environment from any computer with Internet connection or using any applicationnotwithstanding the operating system onwhich it runs.

79

BACHELOR PROJECT DESCRIPTION

9. How can it be ensured that the system is available for 99.99% of time?
10. How can legal ramifications for providing access to our system be avoided?

4 Delimitation
One of the subproblems that will not be considered further in this project issubproblem 7. Storing users data securely will not be considered. However, thesystemwill store data for each user separately. The reason why other securityconsiderations are not included into the project is that it would take time awayfrom developing the core functionality of the system.Onemore subproblem that relates to security is subproblem 8. Not only theusers data need to be secured when the product comes to production, but thewhole system needs to be secure and prevent any unintended use. However, forthe purpose of this proof of concept application this requirementwill not be takeninto consideration.Next subproblem that will not be considered is number 9 - how to ensure thatthe systemwill have an uptime of more than 99.99%. This particular subproblemonly becomes important when the product is used by real users. Otherwise itonly represents a burden during the development of the first product iteration. Inorder to achieve the uptime goal the resulting solutionwould have to be stableand efficient in the long term.Another subproblem that will not be considered are the possible legal prob-lems that arise with creating such a system - subproblem 10. The obvious legalissue are licenses for the applications accessed by the users. This issue will not beaddressed as it is not necessary for the purposes of this proof of concept, it has norelation to a software engineering education and it is hard to confront withoutthe necessary knowledge in the legal field.Regarding the 2. subproblem, for the purposes of the first product iterationit will be limited to only support Windows 10 and an instance of Ubuntu. Fur-thermore, for each of the systems only two suitable freeware applications will besupported. This is due to the fact that the system is expected to be only a demo,and as such two applications is enough to demonstrate the proof of concept forthe system.Subproblem number 6 — how to make the system scalable — will only beconsidered and partially dealt with if the time allows as this subproblem wasestimated to be the biggest in relation to howmuch timewill be needed to solveit, as can be seen in the next section.

5 Choice of models andmethods
Thewhole groupwill be responsible for all the tasks discussed in the followingtable:

80

BACHELOR PROJECT DESCRIPTION

What- subproblem Why- study this problem Which- outcome is expected Which- methods / models / the-ories will be used
What- is the estimated work-load2

Howcan the user avoidbuying expensive hard-ware?
This is of interest asmany people do nothave a big amount ofdisposable income sowhen their computereventually requires re-placement it can havea big impact on their fi-nances.

The expectation hereis a proof of concept,meaning that it is notexpected that peoplecould start using thisproduct instead ofbuying new computerswhen this projectis finished. Furtherdevelopment wouldbe needed to achievethat.

Utilize theory regard-ingdistributed systemsand UML3 as a model-ing tool to design anddocument the system.

The time for complet-ing this problem is in-cluded in theestimatedtime for subproblem 2and 3.

How can it be madepossible for a user torun any applicationnotwithstanding theoperating system?

This is relevant tostudy as this is part ofthe main functionalityof the project. It ben-efits the end user in away that they do notneed to consider whatoperating system theapplication they wantto use is compatiblewith.

It is expected to becompleted to a degreewhere theprinciple canbe demonstrated. Thatis, as it is specified inthe delimitations, thiswill only be demon-strated with applica-tions running on twodifferent operating sys-tems.

System design will bevery much the centerof attention. Further-more theory from thearea of computer net-working will also bevery relevant.

This is expected totake approximately275 hours.

How can the applica-tions share data? This is relevant inorder to retain theconvenience whileaccomplishing the firstsubproblem. Achievingthis subproblem allowsapplications to accessall of the users datanotwithstanding themachine and operatingsystem on which theapplication runs.

This is expected to becompleted to a levelso that it is possible todemonstrate at leastsome sharing of dataamong applicationsrunning on differentoperating systems.

As a basis a theoryfrom a Computer Net-works course will beused to build an ar-chitecture that allowssharing of data.

It is estimated for thisto take 136 hours.

2Three-point estimation (Whiting, n.d) of formE = (Eoptimistic + 4 ∗Erealistic +Epessimistic)/6was used to calculate the estimate3UnifiedModeling Language

81

BACHELOR PROJECT DESCRIPTION

What- subproblem Why- study this problem Which- outcome is expected Which- methods / models / the-ories will be used
What- is the estimated work-load

How can a user runmultiple applicationssimultaneously?
This is relevant asusers need to be ableto work with manyapplications at thesame time as they areused to.

This is expected tobe completed to adegree where thisfunctionality can bedemonstrated on threeapplications runningsimultaneously. Itcannot be automat-ically assumed thatthe system will beable to scale to moreapplications at thesame time.

Theory of systemdesign and computercommunication.
It is expected for this totake 102 hours.

How to make the sys-tem as responsive asis required for it to beuseful?

This is importantto consider as itwill uncover somenon-functional perfor-mance requirementsfor the system. It isimportant to find bothwhat is the acceptableresponsiveness of thesystem for the userandwhat are thewaysto achieve it.

This is expected to becompleted to a limitedextent where themainfocus will be on refreshrate and the ping timeof the system.

For this subproblemmainly the theory ofcomputer communica-tion will be used.

Although it is expectedto be achievedonly to alimited degree, it is stillestimated to take 267hours.

How to make the sys-tem scalable? This is somewhat ob-vious as the system isintended to be usedby many people, andas such a non-scalablesystem will not be ofany use as soon asmany users start usingit.

This is expected to bedone to some extentbut mainly throughsolving other problemswith scalability in mind.

Mainly an automationof system deploymenthas to be explored anddeveloped here. Sys-tem architecture hasto be reconsidered foran efficient scalable de-ployment.

It is estimated that thiswill takeup around692hours.

82

BACHELOR PROJECT DESCRIPTION

6 Time schedule
Around 1000 to 1100 hours is expected to be spent from August to December.This brings up the total of hours spent to around 1250 hours.The deadline for the project isDecember 12. To have a time buffer it is plannedfor a transition phase to be done by December 6.

Figure 1: Timeline withmilestones of the project
Following list describes some of the milestones visible in figure 1 in greaterdetail:
2. Project proposal, project description and SRS4 documents are approved.
3. Conclusion of the initial analysis including the completion of a critical pathanalysis (Mind tools content team, n.d.).
4.1. Fundamental functional design is done and the client is able to run a remoteapplication and control it with only mouse, meaning no other input is beingtransmitted.
4.2. Applications and users are able to access all of the files in the shared filestorage.
4.3. Until now, a notion of a user account did not exist. This milestone imple-ments user accounts and limits access to files that the user owns.
4.4. Support for keyboard controls is introduced. Furthermore, input from amicrophone is being sent and audio is also being received by the client inaddition to the video.
5. Completion of the project and process report.

4Software Requirement Specification

83

BACHELOR PROJECT DESCRIPTION

7 Sources of information
Web references:Alvarez M., 2009. The Average American Adult Spends 8 1/2 Hours A DayStarting Into Screens. Available at: <https://atelier.bnpparibas/en/smart-
city/article/average-american-adult-spends-8-1-2-hours-day-staring-
screens> [Accessed 09-04-2019]Beach, T. E., n.d. Types of Computers. Available at: <https://web.archive.
org/web/20150730182332/http://www.unm.edu/~tbeach/terms/types.html>[Accessed 09-04-2019]Dignan D., 2019. Top cloud providers 2019: AWS,Microsoft Azure, GoogleCloud; IBMmakes hybrid move; Salesforce dominates SaaS. Available at: <https:
//www.zdnet.com/article/top-cloud-providers-2019-aws-microsoft-azure-
google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/> [Ac-cessed 09-04-2019]Durden O., 2018. The Average Lifespan for Laptops. Available at: <https:
//smallbusiness.chron.com/average-lifespan-laptops-71292.html> [Ac-cessed 09-04-2019]Gilbert B., 2018. The PlayStation 4 continues to dominate as the world’s mostpopular gaming console. Available at: <https://nordic.businessinsider.com/
ps4-playstation-4-lifetime-sales-2018-1?r=US&IR=T> [Accessed 09-04-2019]Mind tools content team, n.d. Critical Path Analysis and PERTCharts. Avail-able at: <https://www.mindtools.com/pages/article/critical-path-analysis.
htm> [Accessed 25-04-2019]RouseM., n.d. cloud storage service. Available at: <https://searchstorage.
techtarget.com/definition/cloud-storage-service> [Accessed09-04-2019]Whiting B., n.d. Three-Point Estimating: Definition & Role in Scheduling. Avail-able at: <https://study.com/academy/lesson/three-point-estimating-definition-
role-in-scheduling.html> [Accessed 09-04-2019]

84

PROJECT REPORT

D User manual
This user manual is intended to be read by users of the system "Cloud computingfor end users".To start using the system, boot up the client application. Form here on a useraccount is needed.To create an account, press the "Create account" button, then enter an emailand a password for the account and press "Create account and login" button.This automatically logs you in to the newly created account. If an account alreadyexists, simply login to that account using the email and password associatedwithit. When successfully logged in to an account, there are now two different op-tions of how to proceed. The first option is to launch applications and use these.This can be done by clicking one of the applications displayed in the list of appli-cations. This opens a new window from where the application can be used afterthe initialization is done.The second option is to go to the files tab by clicking "Files" in the navigationbar in the top. The files view shows the list of files and it is also possible toupload files to the system, download files from the system, rename them anddelete them.When files have been uploaded to the system, they can be used by thelaunched applications. This is done by selecting a file from the list of files, press-ing the button "Send file to an application" and then clicking on the specific ap-plication that the file should be made available to.The file is found in "ccfeu-files" folder on Desktop from where it can beopened in the application as usual.When finished working with the file using the application, simply save thechanges in the application and close the application window using the cross but-ton in the top right corner. This saves the changes to the system.Lastly, to logout of an account, press the gear icon on the main window andthen the "Logout" button in the dropdown menu.This concludes the simple overview of the system that is provided in this usermanual.

85

PROJECT REPORT

E Authorship
Section name Main responsible
Abstract Krystof, Kenneth
Introduction Krystof, Kenneth
Analysis Krystof, Kenneth
Design - Frontend Krystof
Design - Middleware Kenneth
Design - Backend - File servermodule Krystof
Design - Backend - Database servermodule Krystof
Design - Backend - Remaining 5 sections Kenneth
Implementation - Frontend Krystof
Implementation - Middleware Kenneth
Test Kenneth
Results and discussion Krystof, Kenneth
Conclusion Krystof, Kenneth
Project future Krystof

86

