VIA University
College

CLOUD COMPUTING FOR END USERS
PROJECT REPORT

Kenneth Ngrholm 254309
Krystof Spiller 253812

supervised by
Lars Bech Sgrensen

74442 characters (not including spaces)

Software Engineering, 7" semester
December 16, 2019

Document versions:

Version Change Date
0.1.0 Initial structure following ICT specific guide- | 2019/08/19
lines
0.2.0 Start of versioning 2019/10/16
0.3.0 Use case descriptions reorganized and ex- | 2019/11/04
panded; Analysis section reviewed; new Mid-
dleware section in Implementation; new File
servermodule section in Backend design
0.4.0 Design - added file capabilities; Implementa- | 2019/11/18
tion - revised Middleware section; Analysis - mi-
grated GUI design from Design to Analysis; Test
- started description of need to have parts of
the use cases
0.5.0 Design - described events capture in frontend | 2019/11/25
and keyboard control APl in backend; Test - all
use cases described and moved to appendix,
left only illustrative one; Discussion - started;
added non-functional requirement; figures up-
dated to match current design
0.6.0 Added Abstract and User manual (appendix); | 2019/12/02
Test, Results and discussion, Conclusion and
Project future considered release candidates;
minor additions to Use case descriptions and
Delimitations; added figure 13 to Middleware
design
1.0.0 Minor changes after going through finalization | 2019/12/16
checklist; changes to Glossary; minor figure up-
dates; created a source code appendix
Contents
Abstract 6
Glossary 7
1 Introduction 9
2 Analysis 11
2.1 Requirements 11

2.2

2.1.1 Userstories o o i e 11

2.1.2 Non-functional requirements 11
213 Usecases i e e 11
Usecasedescriptions. 12
2.2.1 Use case description: Manage account 13

2.2.2 Use case description: Launch a specific application 14
2.2.3 Use case description: Control a running application 14
2.2.4 Use case description: Manage personal files in the system 16

2.3 Llookandfeelof GUI 18
231 Mainwindow 18
2.3.2 loginandcreateaccount 18
2.3.3 Applicationsview.o 20
234 Filesview 21
2.3.5 Slave applicationwindow 22
2.3.6 Windowcontrols 22

2.4 Delimitations 23

2.5 Domainmodel 23

2.6 Chosentechnologies 24

Design 25

3.1 Overall systemdesign 25

3.2 Frontenddesign. 26
321 Electron 27
3.2.2 Communicationmodule 28
323 Eventcapture 28
3.24 Webtechnologies 28

3.3 Middlewaredesign 29
331 NetMQ/@MQ. e 30
3.3.2 Generic communicationlibrary 30
3.3.3 Usageindistributedsystem. 35

34 Backenddesign 36
3.4.1 Backend designoverview 37
342 Docker. 37
343 Servermodule 38
3.4.4 Slave-owner servermodule 38
345 Fileservermodule 38
3.4.6 Databaseservermodule 39
347 Slavecontroller 40

Implementation 44

41 Frontend 44
4.1.1 Imagereceiver 44
412 React. e 45

4.2 Middleware 46
421 Encoding. 46

422 Middlewarelibrary 47

Test

5.1 Testofusecases

5.2 Test of non-functional requirements
5.2.1 Non-functional requirement 1 (Windows 10).
5.2.2 Non-functional requirement 2 (CPU utilization)
5.2.3 Non-functional requirement 3 (command delay)

Results and discussion
6.1 Tableoftestresults
6.2 Discussionoftestresults
6.2.1 Discussion of failed non-functional requirement 2 (CPU
utilization)
6.2.2 Discussion of failed non-functional requirement 3 (com-
manddelay)
6.3 Generaldiscussion

Conclusion

Project future
8.1 Businessmodel
8.2 Securityandprivacy
8.3 Availability
84 legalmatters
8.5 Hardware provisioning
8.6 Scalability
8.7 Applicationselection
8.8 Additionalfeatures
8.8.1 Automatic slave initialization
8.8.2 Store application configuration
8.8.3 Automatic applicationupdates
8.8.4 Integrated system augmentations

References

Appendices

A

B
C
D

m

Test of use cases
Source code
Project description
User manual

Authorship

51
51
54
54
54
55

56
56
57

57

57
58

59

60
60
60
61
61
61
61
61
62
62
62
62
62

63
67
67
74
75
85
86

List of Figures

NVoONONULTDAWN B

Usecasediagram
Keyboard layout with key groups
Login GUI within mainwindow
Create account GUI within mainwindow
Applications view and navigation GUI within main window
Files view and navigation GUI within main window
Slave applicationwindow
Domainmodel
Overall systemstructure
Client application overalldesign
Objects sendable via generic communication library
Reduced class diagram for the generic communication library . . .
Simplified overview of the connections in the distributed system
Client-to-servermodules communication library inheritance over-

ER diagram showing the Usertable
Client-to-slave communication library inheritance overview . . .
Brokenimageicon

Listings

oONONULTDAWN R

Slave application window interval for updating animage
Selective rendering based on loggedInvariable
Usageofafeatureflag
Sample of the Encodingclass
Implementation of proxy method for remote method invocation .
WrapCallBackmethod
Method SendMessage v vt ittt e
Method ReceiveSendable

VIA University
PROJECT REPORT g% College

Abstract

This project envisions a system that alleviates several disadvantages that exist
in the way computing is done today. A fundamental problem is that capabilities
of a computer are given and limited by the components it contains. If a laptop is
bought for the purpose of use while traveling and light office work, it cannot be
expected that the same computer can run power-hungry applications. All in all,
the disadvantages of the status quo can be summarized as limiting, uncomfort-
able, costly and wasteful.

The envisioned system moves the computation of any application to servers
and provides a computationally light application that can be used on the end
users’ computers to access and interact with the applications that are being run
on the servers.

Furthermore, the envisioned system stores users’ files on servers where it is
ready to be used by the applications running on the servers or updated from the
client application running on the end user’s computer.

This also means that a user can access the system, with all their configuration,
applications and data, from any computer with Internet access just by logging in.

The developed system contains all the core functionality of the envisioned
system. That is not to say that the developed system is a minimum viable prod-
uct, as the system is lacking many critical features. However, if the envisioned
system was to be fully implemented, it could significantly improve the way com-
puting is done today.

Used technologies: C# .NET Core 2.2, Electron, React, NetMQ, Python with
PyAutoGUI, Hyper-V and Docker.

Source code can be found in appendix B.

VIA University
PROJECT REPORT g% College

Glossary

This glossary lists terms used in this report and specifies how these terms are
emphasized from within the text.
In this report text that refers to code is written with a monospaced font.

Terminology

Terms listed here are italicized in the text. When used, it refers to a particular
meaning described in the list below:

e Server suite - consists of servermodules and slave modules

- Servermodule - part of a server suite. List of them follows:
* Server module
* Slave-owner servermodule
* Database servermodule
* File servermodule

- Slave module - combined unit of a slave controller running on a slave
* Slave - virtual machine responsible for running a single applica-

tion that is streamed to and controlled from the client application

* Slave controller - software that runs on the slave

e Client application - native (Windows) application; made up of main applica-
tion window, slave application window and communication module

- Main application window or just main window - window that appears
after launching the client application showing GUI for login, creating
an account, applications view and files view

- Slave application window - window that displays an application run-
ning on slave module

- Communication module - mediates communication between client ap-
plication and server suite

e Generic communication library - custom made middleware library that is
used both for the communication between the client application and server-
modules as well as for communication between the client application and
slave module

e Use case - collection of need to have and nice to have scenarios that group
meaningfully

- Scenario - part of a use case defined by a series of steps that are
needed to achieve it; can be either need to have or nice to have
* Need to have - the scenarios of a use case that must be included
in the project
* Nice to have - the scenarios of a use case that may be included if
time permits

VIA University
PROJECT REPORT g% College

Acronymes, initialisms and abbreviations

Terms listed here are written in ALL CAPS in the text without any other emphasis.

API - Application Programming Interface
AWS - Amazon Web Services

CGlI - Common Gateway Interface

CIA - Confidentiality, Integrity, Availability

CLI - Command Line Interface

DHCP - Dynamic Host Configuration Protocol
DOM - Document Object Model

ER - Entity-Relationship (model or diagram)
IPC - Inter-Process Communication

JSON - JavaScript Object Notation

TCP - Transmission Control Protocol

VIA University
PROJECT REPORT é% College

1 Introduction

This introduction is based on the project description found in appendix C.

Some of the disadvantages of the status quo in computing for regular users
where they need to own the hardware that does the actual computing are ex-
amined in the following paragraphs.

First and foremost, the hardware the user bought has only a limited computa-
tional potential or use case that stays the same for the rest of the hardware life-
time. This means that if this hardware has been bought for ordinary office work,
one cannot expect to be able to run on it power-hungry applications such as
Adobe Premiere Pro (Puget Systems, n.d.), Autodesk 3ds Max, Trimble SketchUp
and similar, as well. On the other hand, in case of gaming consoles, which is just
another piece of computational hardware many people buy (Gilbert, 2018), one
cannot expect to be able to do any office work. A lot of hardware is also made
for a specific form factor further limiting the machine’s potential. Consider for
example the constrains imposed on laptop manufacturers.

Second, the hardware needs to be exchanged every so often, on average
every 5 years (LaMarco, 2018), for a new one because of the hardware obso-
lescence and therefore lacking computational performance. This necessarily re-
quires some time to be spent selecting the new model and setting it up, as well
as paying the upfront cost of the computer. Furthermore, setup of a new com-
puter can be a frustration with installing all of the software from the previous
machine and copying the existing data. In case of laptops it means exchanging
the whole machine instead of only the parts involved in computation, which is
also unnecessarily wasteful.

Third, the hardware is tied to a certain operating system that allows to use
features and applications available only on that system. Although it is possible
to run many operating systems on one machine, it is nonetheless problematic to
run two applications, that are each available only on a different operating system,
at the same time.

Fourth, the fact that the user and only the user owns and uses this hard-
ware means that it in fact sits idle and unused most of the time (Alvarez, 2009).
This strategy is wasteful, especially if the relative ease of centralizing processing
power, which allows for a much higher utilization (Dignan, 2019), is considered.
Assume a conservative estimate that the hardware is being used for 25% of the
time and stays idle for the remaining 75%. This means that the world needs
four times more hardware than if the hardware would be used non-stop with-
out being idle. This project continues the trend of getting "more from less" and
"swap(ping) atoms for bits" (McAfee, 2019).

Fifth, in the current paradigm, the user is responsible for updating the ap-
plications, which takes extra effort and is therefore a nuisance for the regular
users.

Lastly, if a user does not have the hardware with them, they cannot access
their machine and use it. Data sharing services such as Dropbox, Google Drive or
Microsoft OneDrive (Rouse, n.d.) allow users to put their data into cloud storage,

VIA University
PROJECT REPORT g% College

making them accessible from every computer with an Internet access. As of now,
however, there does not exist a solution that would provide the same comfort
accessing a users’ applications.

This bachelor project looks into a system that alleviates the aforementioned
disadvantages. A system that is inspired by the historical approach to comput-
ing by mainframe and client (Beach, 2000). This mimics the approach of cloud
computing services (GURU99, 2019). Only in this case, it is directed at end users
rather than businesses. Specifically, the system explored in this bachelor project
is that of running the applications in the cloud and streaming them to the client
application while allowing the user to use them as usual, similar to how remote
desktop works. The main technical challenge in this report can be summarized as
"how to use a GUI application from a computer while the application is running
in the cloud".

Consider what a system needs to accomplish for the user.

It must allow the user to use any remotely running application as if it would
be running locally so that the user is able to work with it as usual. It must also
act as a central storage for all of the user’s data.

10

VIA University
PROJECT REPORT é% College

2 Analysis

This section specifies what can be expected from this project.

2.1 Requirements
For this project, the functional requirements are stated in the form of use cases.
In order to create use cases, some overarching user stories are made. Further-
more, non-functional requirements are stated in a numbered list.
2.1.1 User stories

1. As a user, | want to use any application from a low-end computer.

2. As a user, | want the system to be personalizable.

3. As a user, | want to be able to work with files in the system.

2.1.2 Non-functional requirements
1. The client application must run on Windows 10.

2. The client application must be able to run on a low-end laptop CPU with an
average CPU Mark score of 4967 (PassMark, 2019) with three concurrent
client applications running, never exceeding 30% utilization.

3. The delay from a mouse or keyboard command is given until the result of
execution being shown in the slave application window must never exceed
3 seconds.

2.1.3 Use cases

Figure 1 shows the use case diagram for the system. This diagram is intended to
be used as a basis of discussion to make sure that all of the necessary function-
ality is covered.

The use case diagram displays both use cases and actors. The use cases repre-
sent the contractual commitments. The actors are types of user the functionality
is needed for.

11

VIA University
PROJECT REPORT é% College

Launch a
specific
application

Manage
account

Control a
running
application

Manage
personal files
in the system

User

Figure 1: Use case diagram

Actor description

e Actor : User
A user is a person who uses the system from the client application. A user
can have many different motives for using the system. As an example,
three different users are considered:

- A content creator starting out could use this system for resource in-
tensive tasks such as video rendering and editing.

- A regular computer user who uses their computer for ordinary ac-
tivities but finds that a computer is too expensive and would like to
have a much cheaper option, even if this would require an Internet
connection to function.

- An advanced user that is able to utilize other advantages of the sys-
tem, such as being able to access their environment from any com-
puter with Internet connection or using any application notwithstand-
ing the operating system on which it runs.

2.2 Use case descriptions

This section elaborates the use cases in more detail, specifying which parts of a
use case are need to have and nice to have. Only the scenarios deemed as need to
have are further elaborated.

12

VIA University
PROJECT REPORT é% College

2.2.1 Use case description: Manage account

Actors: User

Elaboration: This use case involves creating an account, logging in to an account
that is already created, logging out of an account that is logged in, updating an
account’s information and deleting an account.

Need to have:
1. Create account
2. Login to account
3. Logout of account
Nice to have:
1. Update account information

2. Delete account

Scenario 1 - Create account

Precondition: Having launched the client application
Post-condition: Account has been created and user is logged in
Scenario steps:

1. Press "Create account”
2. Enter valid required information

3. Press "Create account and login"

Scenario 2 - Login to account

Precondition: Having launched the client application and already having created
an account

Post-condition: User is logged in

Scenario steps:

1. Enter required information

2. Press "Login"

Scenario 3 - Logout of account

Precondition: Having launched the client application and be logged into an ac-
count

Post-condition: The login form is shown

Scenario steps:

1. Click on settings menu

2. Click on "Logout" from the context menu

13

VIA University
PROJECT REPORT é% College

2.2.2 Use case description: Launch a specific application

Actors: User

Elaboration: This use case encompasses being able to launch an application from
a client application and streaming the application running on the slave module to
a slave application window.

The streaming of the application comprises of multiple media streams coming
both from and to the slave module. The most important is streaming the visual
representation of the application running on the slave module in form of a video
or images to the slave application window. A preferred approach is streaming a
video that includes the audio feed as well as justified later in section 3.4.7.

Need to have:
1. Streaming visual representation of the application in any way
Nice to have:
1. Streaming visual representation of the application as a video
2. Streaming audio from the application to the slave application window

3. Streaming audio input (e.g. from a microphone) from the client application
to the slave module

4. Streaming video input (e.g. from a webcam) from the client application to
the slave module

Scenario 1 - Launch a specific application

Precondition: Having launched the client application and be logged in
Post-condition: New window is created that after initialization shows the se-
lected application

Scenario steps:

1. Navigate to the applications tab
2. Find the application
3. Click the application to launch

2.2.3 Use case description: Control a running application

Actors: User
Elaboration: This use case entails remote mouse control and keyboard control of
a running application.

Mouse control is an important part of controlling an application, as most ap-
plications in use by end users are GUI applications. It can be further broken
down into individual parts. There is movement of the mouse itself, its left and

14

VIA University
PROJECT REPORT é% College

right mouse button as well as the scroll wheel.! The mouse buttons produce
both down and up events.

The keyboard is another important control device. A keyboard layout that
is used as a reference to different key groups can be seen in figure 2. To fully
support keyboard control all of the keys should be supported. Key clicks are just
like in the case of a mouse made up of both down and up events. These need to
be handled separately as it is otherwise not possible to use keyboard shortcuts,
which often require several down events before the keys can be released.

Frint Pause

Esc FiE2 fE QRS F5 F6 F7 F8 F9 F10 F11 F12 Sem - erOl mlbm g Cops Saol
SysRq Break Lock Lock Lock

: ‘1 2 g i ? ;3 5 g s(a 21 B B - e |pome | G5 e
L alwlelalr L fulifal: f]) P Delele | End | D9 :Hme °t Sgup
N 128 FS) RDN BEN RSN RN RSN BE i | 11
i { Z X c N B N M 3 y 7 i 1 énn : L Sgnn
Enter
cn Al AtGr c -} [= (;s el
Character keys Enter and editing keys Navigation keys Numeric keypad
Modifier keys System and GUI keys Function keys Lock keys

Figure 2: Keyboard layout with key groups (Wikimedia Commons, 2018)

Need to have:
1. Use of left and right mouse buttons, both down and up events

2. Keyboard control - Character keys, enter and backspace, both down and
up events

Nice to have:
1. Continuous mouse position update
2. Scrolling
3. All remaining keyboard keys, both down and up events
4. Resize the slave application window

5. Changing the local cursor so it matches the one on slave module

10ther potential mouse actions exists as well, such as back, forward and macro buttons on both
mouse and keyboard. For simplicity’s sake, these are not considered.

15

VIA University
PROJECT REPORT é% College

Scenario 1 - Use of left and right mouse buttons, both up and down events
Precondition: Having launched a specific application

Post-condition: See that the mouse events were activated

Scenario steps:

1. Hover the mouse above the slave application window
2. Press down on either left or right mouse button
3. Optional: move the mouse

4. Release the mouse button to activate the up event

Scenario 2 - Keyboard control - Character keys, enter and backspace, both
down and up events

Precondition: Having launched a specific application and being in a state where
typing on the keyboard produces an observable outcome

Post-condition: See that the expected key output occurred

Scenario steps:

1. Press key
2. Release key

2.2.4 Use case description: Manage personal files in the system

Actors: User

Elaboration: This use case covers upload of files to the system from the local
computer, download of files to the local computer from the system, usage of files
with the slave module, which includes sending a file from the system to the slave
module, as well as saving a file from the slave module to the system. Supporting
these actions does not substitute a regular file explorer and is considered as only
a primitive file management.

Need to have:
1. Upload file from local computer to the system
2. Download file to local computer from the system
3. Use file in the system from a slave module
4. Get a file from a running application to the system
Nice to have:
1. Rename file in the system

2. Organize files in the system using folders

16

VIA University
PROJECT REPORT é% College

Scenario 1 - Upload files

Precondition: Having launched the client application, be logged in and having
navigated to the 'Files’ tab

Post-condition: The uploaded file appears in the list of files

Scenario steps:

1. Press "Upload file" button

2. Select a file using the file explorer

Scenario 2 - Download file

Precondition: Already having at least one file in the system

Post-condition: The selected file is downloaded to "Downloads" folder on the
local PC

Scenario steps:

1. Select a file

2. Press "Download file" button

Scenario 3 - Use file already in the system from within an application
Precondition: Already having at least one file in the system and having a running
application

Post-condition: The selected file can be opened in the application

Scenario steps:

1. Select the file to send

2. From the main application window, press "Send file to an application" but-
ton.

3. From the dropdown menu select an application to send the selected file
to.

4. Open the file from within an application in a usual way. The file is found in
the folder "ccfeu-files" located in Desktop.

Scenario 4 - Get a file from a running application to the system
Precondition: Having a running application

Post-condition: The list of files is updated and changes are present
Scenario steps:

1. Save changes to specific folder ("ccfeu-files" located in Desktop)
2. Close the slave application window

3. When the slave application window is closed, then the files are saved to the
system.

17

VIA University
PROJECT REPORT é% College

2.3 Look and feel of GUI

By analyzing the use case description scenarios, it was decided to go with an
approach where one window (main window) is responsible for every user inter-
action that is not directly interacting with an application running on the slave
module and all the other windows (slave application window) interact with a single
application running on the slave module and are launched from the main window.
Furthermore, as the main window has to have GUI for login and sign up forms
and for lists of applications and files, the preferred window shape is an elongated
rectangle.

As the chosen technologies (section 2.6) allow building the GUI as a web
application, Bootstrap, a popular CSS framework, can be used. This choice then
inspires the GUI designs.

This section shows mockups of the GUI design and describes the thinking
behind them. Figures in this section are cropped to save space.

The user manual for the system can be found in appendix D.

2.3.1 Main window

Main window has GUI for the user to login or create an account, applications
view and files view. By default it is a rectangular window with an aspect ration
of 2:3 so it is higher than it is wide as this shape is better for showing a list of
items, such as applications or files.

2.3.2 Login and create account

The login form is shown first when the application is launched and can be seen
in figure 3. The create account form is shown in figure 4 and is accessible from
the login form by clicking the light gray button in the bottom of the form. Create
account form has a similar button to get back to the login form.

Both of the forms require only email address and password, as this is the only
information that is used. The blue button submits the form and if the submitted
information is incorrect — in the case of a login it is a nonexistent combination
of the email address and password and in the case of creating an account it is
an email address for which an account already exists — relevant error message
is shown above the submit button.

In a production ready system, more information would be required when cre-
ating an account. Some additional fields could be a username and a confirm pass-
word. Furthermore, when logging in, either email or username could be used.
There should also be a checkbox to remember user. Moreover, validation of in-
put and measuring of password strength should be done in the create account
form. It should also be verified that the email is valid.

18

VIA University
PROJECT REPORT %% College

Login

Email address

[Email address placeholder]
Password
[Password placeholder]

Either email or password is not correct

Don't have an account?

[Create account]

Figure 3: Login GUI within main window

Create account

Email address

[Email address placeholder]
Password
[Password placeholder]

Such email is already registered

Create account and login

Already have an account?

Figure 4: Create account GUI within main window

19

VIA University
PROJECT REPORT g% College

2.3.3 Applications view

Figure 5 shows an applications view and navigation GUI within the main window.
This is the view that appears after a successful login.

Apps Files %OR

Logout

List of apps

p—
App App name

icon App version
(R

p—
App App hame

icon App version
N

App App hame
icon App version R
e

" Runson 05

Figure 5: Applications view and navigation GUI within main window

It shows a navigation bar in the top having options for either applications
view or files view and settings icon to the right. The cursor signifies that there is
an additional functionality when the element is being interacted with either by
hovering over or clicking on it. By clicking on the settings icon a dropdown menu
appears showing an option to logout. The navigation bar is a common element
for both the applications view and files view.

Below the navigation bar is a list of applications that can be launched. Each
item in the list shows an icon,2 name and version of the application in ques-
tion. Additionally, when the item is being hovered over, it shows which operat-
ing system it runs on as the same application can be available for many operating

2|n the current version, only a placeholder icon is shown.

20

VIA University
PROJECT REPORT %% College

systems and be slightly different either in their look and feel or the offered func-
tionality. Clicking on the item creates a new slave application window with the
selected application.

2.3.4 Files view

Figure 6 shows a files view and navigation GUI within the main window. This is
the view that appears after a clicking of "Files" in the navigation bar.

@ Apps Files ?:b

List of files

File)
icon lextfile.txt
File . L.
icon imagefile.jpg

Download file | |Upload new file

New file name Rename file

Remove file | | Send file to an application

Running application #1

Running application #2

Figure 6: Files view and navigation GUI within main window

The files view shows a list of files that are uploaded in the system together
with a couple of buttons to interact with the files. Each item in the list shows
a file icon® and a file name. When the item is clicked, it becomes active and

3As for the icons on the applications view, only a placeholder icon is shown.

21

VIA University
PROJECT REPORT % College

the background changes to blue. When a file is selected, it can be downloaded,
removed, sent to a running application or renamed. To rename a file, new file
name needs to be given in the field next to "Rename file" button. Finally, there
is also a button to upload a new file to the system, that opens a file dialog and
allows the user to select a file to upload.

2.3.5 Slave application window

Figure 7 shows a slave application window. The design here is straightforward as
it is just an image of the application running on the slave module. The size of the
slave application window is variable and depends on the application that is being
run.

Window controls

App images

Figure 7: Slave application window

2.3.6 Window controls

It is important to note that because both main window and slave application win-
dow are frameless,* some elements allowing a basic window control are neces-

4Meaning without a chrome as described in Mozilla Contributors (2019a)

22

VIA University
PROJECT REPORT é% College

sary. Figure 7 is showing elements for closing, minimizing and dragging a win-
dow.

2.4 Delimitations

If not stated otherwise, functionality is delimited due to time constraints.

There are use cases for an actor called administrator that were delimited. Ad-
ministrator is responsible for keeping the system running and would therefore
be a technically trained person. She would control the system via CLI and she
would be able to administer the server suite, including user account and applica-
tion management. These use cases are delimited as the need for this functionality
only arises in production.

Security, such as encryption of network communication and hashing of pass-
words, is not considered in this project as it only serves a demonstration purpose.

Management of account data, such as a possibility to change email and pass-
word or delete an account directly from the client application is also delimited.

The scenario for sending a file in the system, to an application described in
section 2.2.4 does not take into consideration more than one instance of the
same application opened at the same time.

Optimally, it would be possible to organize files into folders. This is to allow
users to impose structure on their files and thereby become more productive
when working with the system. However, this feature is delimited.

The optimal system would also support streaming audio from the client’s mi-
crophone as well as video from the client’s webcam to the slave module in order
to increase the number of supported applications, as webcam and microphone
are an integral part of some applications, and as such these applications would
not be usable without this functionality. However, the specified functionality is
not a part of this project.

Another element for the system to be considered production ready is the
possibility to resize the slave application window. However, as this is a usability
feature and not a feature that is necessary to show the feasibility of the system,
this is not a part of this project.

2.5 Domain model

A list of domain entities that comprise the domain model are identified from the
use case descriptions in section 2.2:

1. File
2. Application
3. User Account

4. Client

23

VIA University
PROJECT REPORT % College

These entities can then be modeled in a domain model diagram.

R Uses
uns Client
Application Uses — UserAccount
OperatingSystem Owns i
Email
MName MName P d
Version Data asswor

Figure 8: Domain model

Figure 8 shows that the client runs applications,® that in turn uses files. Fur-
thermore, the client also makes use of a user account that owns files.

2.6 Chosen technologies

Having completed the analysis of what the solution must be able to do, some
technologies have been settled on as the main technologies. These are listed
below together with a short description as well as a reason for being chosen.

1. C# .NET Core
e .NET Core is a general purpose cross-platform programming frame-
work.
e Chosen because the project team has much experience with .NET
and at the same is a great tool for the job at hand.

2. Electron

¢ Framework that allows the use of web technologies for development
of native cross-platform applications. A longer description of Electron
is in section 3.2.1.

e Chosen because it allows creating cross-platform applications from
a single code base as well as a pilot project to try out how Electron
works in a project.

3. Docker

5 Applications running remotely

24

VIA University
PROJECT REPORT é% College

e System that makes it easy to containerize software to simplify de-
ployment and management of applications. A longer description of
Docker can be found in section 3.4.2.

e Chosen both as a pilot project and because of the containerization
that Docker facilitates.

4. NetMQ

¢ NetMQis a message queue, network communication library, that sup-
ports asynchronous messaging. A longer description of NetMQ can
be found in section 3.3.1

e This technology was chosen because it is made for .NET, as well as
professional interest from one of the team members.

3 Design

This section of the report covers the system design, including a short description
of specific technologies used to fulfill all the use cases and the non-functional
requirements. It is separated into four sections.

The first section 3.1 describes the overall system design.

Section 3.2 describes the design of the frontend. That includes both GUI and
communication with the backend.

Section 3.3 describes the design of the middleware that is used to facilitate
the communication between the nodes.

Section 3.4 describes the design of the backend. That is how the different
parts of the backend are designed as to separate out the concerns of the server
suite into independent units.

3.1 Overall system design

The overall system architecture can be seen in figure 9. The domain entities from
figure 8 can be mapped to their own block in the server suite.

That is, the user accounts are stored in the database, for which the access is
controlled by the database servermodule.

The files are stored in the file servermodule, which is also responsible for keep-
ing track of file ownership by different accounts and by extension only making
those files visible to that account.

The applications are run by a slave module. Slave-owner servermodule keeps
track of slave modules, their connection information and which applications and
operating system they run.

And finally, the client is represented by the client application in figure 9. Here,
the client application is responsible for communicating with the servermodules,
and the slave application windows are responsible for direct communication with
the slave modules. It is therefore the responsibility of the slave application window

25

VIA University
PROJECT REPORT g% College

to receive images from the slave module and output them to the client applica-
tion. Furthermore, it is also the responsibility of the slave application windows
to capture events, such as mouse and keyboard events and send those to the
slave module. As such, each slave module has its corresponding slave application
window.

The communication between the modules happen using the generic commu-
nication library that is described in section 3.3.2. Due to this fact, the commu-
nication module of the client application needs to be implemented in C# as the
classes needed for invoking remote methods with the generic communication li-
brary are implemented in C#.

Client
Slave module 1, 2, - . Client application application

Slave-owner servermodule Server module File servermodule

Server SUite Database servermodule

Figure 9: Overall system structure

3.2 Frontend design

This section zooms in on the client application from the figure 9. An overall design
of the client application is shown in figure 10. It is built using Electron and uses a
communication module that communicates with the server suite using the generic
communication library. These parts are described individually in the subsequent
sections.

26

VIA University
PROJECT REPORT % College

Client application
| Electron
Main process Electron CGl C# communication module
Electron IPC Image receiver
Renderer process
Sending Generic o
- . : communication
Main window images .
library
Slave app window
Slave module 1, 2, --- Server module

Figure 10: Client application overall design

3.2.1 Electron

Electron is a modern framework developed by GitHub (Electron, 2019a) for cre-
ating native cross-platform applications with web technologies like JavaScript,
HTML, and CSS. It accomplishes this by combining Chromium and Node.js into
a single runtime. The resulting app can be packaged for Windows, Mac and
Linux. It is used by Slack, Discord, Visual Studio Code and many more applica-
tions (Electron, 2019b).

Before diving further into the details, the two process types available in Elec-
tron need to be discussed. They are fundamentally different and important to
understand.

An Electron app always has only one main process which can display GUI
by creating web pages. Each web page in Electron runs in its own renderer
process. The two processes can communicate with each other using Electron
Inter-Process Communication (IPC) described in Electron (2019c) and Electron
(2019d).

Electron and its main and renderer process and their IPC can be seen on the
left side of figure 10. Renderer process is responsible for rendering both the main
window (which is also the startup window) and the slave application window(s).

The part of the client application using Electron is responsible for showing
and managing the GUI, but not for communication with the backend.

27

VIA University
PROJECT REPORT é% College

3.2.2 Communication module

For communication with the backend a communication module is necessary.
Due to the usage of generic communication library it has to be written in C#. It
is responsible for communication with the servermodules and slave module. This
communication is done asynchronously in a callback fashion as described in sec-
tion 3.3.2 with the exception of receiving images from the slave module for which
a socket connection is used for the highest efficiency.

The main process in Electron communicates with this communication module
via Electron CGI (Common Gateway Interface® (Figueiredo, 2019) and, if neces-
sary, relays the information to the renderer via the IPC.

Electron IPC and Electron CGI are using JSON to transmit the data which is
simple to work with in both the Electron part and communication module part
of the client application. Sending images is done by just transmitting the bytes
and it is the responsibility of the communication module to receive a full image
which is saved in a location from which Electron is continually loading a new
refreshed image.

For maintainability purposes, communication module uses NLog (NLog, 2019)
heavily to log info from the running program and to ease an identification of a
potential problem.

3.2.3 Event capture

The slave application window is responsible for capturing mouse and keyboard
events as described in section 2.2.3. These are delegated to the main process
and sent further to the communication module. From there, they are sent to the
slave controller where handled by their respective APIs as described in section
34.7.

3.2.4 Web technologies

Although an Electron application can be created by using pure HTML, CSS and
JavaScript, other web frameworks and technologies can be added. There are
many tutorials and boilerplates available that combine usage of Electron with
other web technologies (Sorhus, 2019). This tutorial (Vitolins, 2019) sets up the
project with TypeScript, webpack, React and Electron CGI. Bootstrap and Sass
support has been added as well. These technologies are described shortly in the
subsequent paragraphs.

React

Reactis a JavaScript library for building user interfaces and has affected the over-
all design of the frontend the most with its components approach(Facebook Inc.,
2019a).

6This module uses this name as it borrows the main idea from CGl, although it is not a full-blown
CGil as described in Robinson and Coar (2004)

28

VIA University
PROJECT REPORT é% College

Building an application with React means creating a lot of components and
creating a logical hierarchical structure from them. These components do not
separate concerns such as view and controller as it is usually done in a design
pattern such as MVC, but rather combine them in small manageable chunks.
Refer to Hunt (2019) for a more detailed introduction to this topic.

TypeScript

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript
(Microsoft, 2019).

webpack

Webpack is used for bundling the source code and other assets (Wikipedia con-
tributors, 2019e). It needs to be run after a change to the source code, as it
generates its own output files that are used in the application while running.
Webpack is highly configurable and it allows splitting the source code into small
logical sections while in the end producing an efficient and standardized code
for the application.

Bootstrap

Bootstrap is the most popular CSS framework for web development (GitHub,
2019). The layout utilities and a few components from Bootstrap are used in the
project.

Sass

Sass is a preprocessor scripting language that is compiled into CSS (Wikipedia
contributors, 2019b). It supports two syntaxes. The project is using the SCSS
(Sassy CSS) form which is closer to that of a regular CSS. The project mainly uses
variables and nesting features provided by Sass.

3.3 Middleware design

A custom generic remote procedure call middleware is designed for this system.
It is designed to use the message queue framework NetMQ, which is a C# adap-
tation of the more widely used ZeroMQ (ZeroMQ, n.d.).

In section 3.3.1 the NetMQ framework is expanded upon. It is necessary to
understand some principles of the NetMQ framework to properly comprehend
the design decisions for the generic communication library.

In section 3.3.2 the design and design decisions of the generic communica-
tion library are described. This includes how the middleware solves some of the
requirements for the system design.

In section 3.4.1 it is described how the generic communication library is used
in the design for the communication between the servermodules and the client
application.

In section 3.4.7 it is described how the generic communication library is used
and extended upon, to design the communication between the client application
and the slave module. However, this is mostly the same as in section 3.4.1.

29

VIA University
PROJECT REPORT é% College

3.3.1 NetMQ/9OMQ

As has previously been mentioned, NetMQ is a C# adaptation of the asynchro-
nous message oriented message queue library ZeroMQ (ZeroMQ, n.d.). ZeroMQ
is a message queue as well as a framework for easier creation of applications
that communicate through a network. ZeroMQ is a very extensive library and
has many advanced design patters. However, due to the time constraint on the
project, the main functionality that is used is its Request and Reply socket.” In
NetMQ, a socket is an object that behind the scenes can have many network
connections. That means a server socket in NetMQ, that is bound to a port on a
machine, can be connected to by a very large amount of clients. In fact, the only
limitation is the amount of available ports and the computation power to handle
a large amount of requests in a timely manner.

When a server socket receives requests from many different clients, it uses a
technique called fair queuing, which means a request is handled for each client
before a second request is handled for any of the connected clients.

As has already been stated, mainly RequestSocket and ResponseSocket are
used from the NetMQ library. These two sockets represent an active and a pas-
sive part of the network connection. The RequestSocket is always the one mak-
ing requests, and a ResponseSocket always responds to requests. The NetMQ
sockets are made as state machines, which means that a RequestSocket can-
not send out two messages without receiving a reply to the first request before
sending out the second request. The same goes for the ResponseSocket, except
it must first receive a request and then send back a reply.

The messages that can be sent through these sockets are NetMQMessages.
These represent a series of Frames that together make up the message. NetMQ
handles the full transport of a message and the programmer does therefore not
need to worry about receiving n number of frames and so forth. The data that
is sent between two sockets is in byte form. However, NetMQ has wrappers
for handling strings without the programmer having to worry about string en-
coding. How the messages are structured using several frames in the generic
communication library is further explained in section 3.3.2.

3.3.2 Generic communication library

The generic communication library is the basis for all the network communica-
tion that happens between nodes. The generic communication library can be de-
scribed as a piece of asynchronous message oriented middleware.

These technical requirements exist for the generic communication library:

1. A call to a remote method must happen asynchronously

7The sockets in this library do not represent a standard network sockets. The word socket is merely
a name that is used, as the design of the framework is inspired by how programmers are used to
program network applications (Hintjens, 2019).

30

VIA University
PROJECT REPORT g% College

2. The library must support routing capabilities. That is, it should be possible
for many nodes to communicate using a central node as a message router.

Technical requirement 1 is required so that a single call does not make a module
unresponsive. Furthermore, due to a module being unresponsive, CPU time is
wasted.

Technical requirement 2 is required so that a deployment of the system can
be simplified and for an increased scalability and reduced maintainability.

Sendable objects

Before diving into the design of the generic communication library, the objects
that can be sent using the generic communication library must be described first.

Figure 11 shows the objects that can be sent through the generic communica-
tion library. There are three classes — Sendable, Response and BaseRequest —
each having a singular purpose. The Sendable base class’s main purpose is to al-
low polymorphism, however, it also serves to improve maintainability by having
less code duplication.

As can be seen in the figure 11, the Sendable class contains two fields: sen-
derModuleID and callID.

The senderModulelID is the ModuleID of the module initiating a request. A
module gets its ModuleID by registering itself to a BaseRouterModule as can be
seen in figure 12, using the method RegisterModule. By registering itself to a
BaseRouterModule, the router module then knows how to send requests and
responses to a given module without having to set up connection configuration
for each module.

The callID is generated by the module that initiates a request. It is used so
that the module can know which request a given response is for.

As was mentioned in section 3.3.1, the sockets used for the communication
are state machines and cannot send out or receive two messages in a row. It
is possible that NetMQ supports our use case directly with a different design
pattern. However, due to time constraints these options were not researched.
Therefore, a workaround is employed such that every time a message is handed
over to another module, an acknowledgement message is sent back, thereby
bringing the sockets back in a state where they can send or receive again.

31

VIA University
PROJECT REPORT é% College

Sendable

+ senderModulelD : ModulelD
+calllD : CalllD

7 =

BaseReguest Response<Leaf>

+ targetModuleType : ModuleType + targetModulelD - ModulelD
+ specificMethodID : string + payload : Payload

Figure 11: Objects sendable via generic communication library

The class Response is a leaf class and it allows for delivery of the return object
of a remote method call. The return object is stored in a Payload class, which is
simply a wrapper for an Object class. There are two reasons for the Response
to be a leaf class. First, it makes it easier to deserialize and second, it is not
necessary to have type safety because when making a specific remote method
call, the return type is already known and therefore typecasting is trivially done.

As the response must always be sent back to the specific module that initi-
ated the request, the Response class has a targetModuleID field, which is used
by the BaseRouterModule to forward the response to its destination.

The BaseRequest abstract class is made to be inherited from, when creating
a communication library that is based on the generic communication library. Any
class that inherits from BaseRequest is treated as a request that can be sent to
other modules.

Because there is a number of unknown classes inheriting from BaseRequest,
it is necessary to specify to the library how to deserialize a BaseRequest into
the required subclass. This is done by inheriting from the Encoding class seen
in figure 12, which is why the method of the Encoding class is abstract.

The BaseRequest class has a targetModuleType field, whereas the Response
class has a targetModuleID. This is because a request can be handled by any
node as long as it is of the right type, whilst a response needs to be sent back to
the specific module that initiated the request. Furthermore, this way, a module
making a request does not need to know the specific moduleID of the module
that it makes a request to.

Generic communication library architecture

Next, the overall structure of the generic communication library is described. Fig-
ure 12 aids in the description of the generic communication library.

32

VIA University
PROJECT REPORT % College

Encoding

DecodelsonToSpecificRequest{specificMethod!D : string, jsonString © string) . BaseRequest
+ EncodeSendable(sendahle : Sendahle) : NetMGMessage

+ DecodelntoSendable(message © NetMQMessage) © Sendable

1
ProxyHelper
1 *
+ modulelD : ModulelD
+ SendResponse(response) : void
+ Setup(...) : void
1
1 1
BaseCommunicationModule AV4
o
#CALL ID_PREFIX : string >| BaseProxy
+ ModuleType : ModuleType - callBacks : Dictionary<CalllD Action<Fesponse=>
. I .
+ Setup(...) : void 1 + HandleResponse(response | Response) : void
BaseServerodule BaseClientModule

+ handleRequest{request : BaseRequest) : void

T

BaseRouterModule

#MODULE_ID_PREFIX : string
[~ + moduleldToRequestSocket : Dictionary<ModulelD RequestSocket>
+ moduleTypeToRequestSocket : Dictionary<ModuleType RequestSocket=
+ ForwardSendahle(sendable : Sendahle) : void
+ RegisterModule{moduleType : ModuleType, Connectioninformation : int) : void

Figure 12: Reduced class diagram for the generic communication library

There are three types in this library that any communicating entity can be —
BaseRouterModule, BaseServerModule and BaseClientModule — each being a
specification of the BaseCommunicationModule.

33

VIA University
PROJECT REPORT g% College

The BaseCommunicationModule has few responsibilities, but it is still impor-
tant. For brevity's sake, its constructor has been omitted in figure 12. However,
it takes a ModuleType as an argument.

The BaseClientModule is a type of module that can only make requests and
get responses. Therefore any module that extends this class represents a client
in a client-server like communication.

For a module to handle incoming requests, a module must inherit from Base-
ServerModule, which can both make requests of its own, and also respond to
requests made to it.

The BaseRouterModule allows other modules to register to it and forwards
both requests and responses it receives that are not intended for itself.

In the case of responses, the router module uses the targetModuleID and
looks up a connection information for that specific module and forwards the
Sendable object there.

In the case of a BaseRequest, the BaseRouterModule looks up all registered
modules of the same type as the targetModuleType and then at random® for-
wards the request to one of these modules.

In order to have the responsibility of sending to and receiving from the net-
work at a singular location, the ProxyHelper was added. Each module has at
least one instance of ProxyHelper. When the setup method of a ProxyHelper
object is called, it registers itself to the BaseRouterModule that it has been given
the connection information for. This results in the ProxyHelper receiving a Mod-
uleID from the BaseRouterModule. As has already been stated, this ModuleID is
then used as the sender moduleID for any requests made with this ProxyHelper.

As has already been explained in section 3.3.1, NetMQ works by sending
NetMQMessages. However, to be able to meaningfully serialize and deserialize
a message, some standard for how a given Sendable object is encoded to and
decoded from a NetMQMessage must be made.

The standard used in this library for encoding and decoding Sendable object
is the following. Every NetMQMessage must have exactly two NetMQFrames. The
first frame must contain a string that is either the string literal "RESPONSE",
or a string that can be used to unambiguously identify the request type, which
means a subclass of BaseRequest. The second frame must include an object
encoded to a string using JSON. The string from the first frame can then be
used to figure out how to deserialize the JSON object that is stored in frame
two. Having discussed how the encoding works, it is now relevant to discuss
how a request can be made.

A request can be made using a class that inherits from the BaseProxy. The
BaseProxy serves as a basis for implementing proxies that can be used by any
given module to call remote methods on a specific module. The BaseProxy holds
some protected methods that simplify the code that has to be implemented in a
class that inherits from the BaseProxy. The BaseProxy requires a ProxyHelper
when it is created because it needs the ProxyHelper to send out the NetMQMes-
sages.

8In production the load-balancing would be more advanced

34

VIA University
PROJECT REPORT g% College

Furthermore, the purpose of having proxies is to hide some of the complexity
in the creation of the Sendable objects. Therefore, for every module inheriting
from the BaseServerModule, a proxy should be implemented. The proxy should
naturally inherit from the BaseProxy. This design is made so that the functional-
ity of these modules can be consumed easily by any other module that inherits
from the BaseCommunicationModule. Finally, when a response comes back for
a request, it is the proxy that is responsible for activating the correct callback
method.

Callbacks

When calling a method on a proxy, both the arguments as well as a callback
method must be provided.? Callbacks are used to handle an asynchronous com-
munication in the generic communication library. One might ask why the more
modern C# async and await code pattern was not used and there are two rea-
sons for this. First, it is only available in a pre-release version of the NetMQ
library. Second, it is due to time constraints combined with the fact that the
responsible developer has no previous experience with await and async code
pattern.

3.3.3 Usage in distributed system

Figure 13 aids in understanding how the generic communication library is used in
a distributed system. For the sake of simplicity, a lot of information is left out.
The figure should be read in a way that each package is its own process, each
potentially running on a different machine. It can then be seen how the Base-
ClientModule uses the BaseProxy to call a remote method on the SlaveOwner.
The BaseClientModule’s BaseProxy uses the ProxyHelper to send a remote
method call object to the ServerModule using the RequestSocket.

When the remote method call object is received on the ServerModule, it is
recognized as a request that needs to be forwarded, which is done by picking
the RequestSocket that points to the SlaveOwner and sending the object there.

In the SlaveOwner it is identified as a request that needs to be handled and
is given to the BaseServerModule by the ProxyHelper. When the request is
processed, the response object is sent to the ServerModule using the Request-
Socket of the SlaveOwner. Then again, the ServerModule identifies the object
as a response, picks the RequestSocket that can send to the module the re-
sponse is designated for, and sends the response there.

When the response arrives back at the ProxyHelper of the module that made
the request, the ProxyHelper first identifies which BaseProxy is responsible for
the request with the given Ca111ID. Then the response is given to the correspond-
ing BaseProxy and here the callback that is connected to the Cal11D is executed
using the response object.

?Instead of providing a callback, another option is to implement the method so that it polls on a pri-
vate variable in the proxy until a response arrives and then returns this value. This would make the
method synchronous. However, it is important to mention that timing out should be implemented
such as not to wait for a response forever.

35

PROJECT REPORT

VIA University
College

SlaveOwner

BaseServerModule

/N
1

1

ProxyHelper

CommunicationModule

0. I\\’
BaseProxy BaseClientModule

1
0..*

ProxyHelper

RequestSocket

ResponseSocket

ResponseSocket RequestSocket

ServerModule

BaseRouterModule

RequestSocket

ProxyHelper

ResponseSocket

Figure 13: Simplified overview of the connections in the distributed system

3.4 Backend design

The design of the backend revolves around the entities that are responsible for
the business logic, referenced to as servermodules. Each servermodule has a single
area of concern. This separation has been done with consideration to scalabil-
ity. One servermodule is responsible for handling the virtual machines that run
the applications (section 3.4.4), another is responsible for handling files (section

36

VIA University
PROJECT REPORT g% College

3.4.5) and the last one is responsible for database access (section 3.4.6). Fur-
thermore, there is also a SlaveController, which represents the business logic
running on slave modules. However, first an overview of the backend design
is given in section 3.4.1, followed by a description of Docker in section 3.4.2.
Docker is described as all of the servermodules run inside Docker containers.

3.4.1 Backend design overview

It can be seen in figure 14 how the modules of the backend are using the generic
communication library. Besides the classes shown in the figure, each class be-
low the line, which inherits from the BaseServermodule either directly or in-
directly, needs a proxy. In addition, many request classes that inherit from the
BaseRequest have been implemented, as well as some model classes.

BaseCommunicationModule

BaseServermodule BaseClientModule
[%. AN AN
BaseRouterModule
AN JAN
DatabaseServermodule ClientModule
SlaveOwnerServermodule ServerModule FileServermodule

Figure 14: Client-to-servermodules communication library inheritance overview

3.4.2 Docker

Docker is a containerization framework (Docker Inc., n.d.[b]). This means that
each applicationl® in Docker runs in its own container which simulates a con-
stant environment with all the required dependencies and consistent system set-
tings. This ensures that the application always runs the same no matter where
the Docker container is hosted. In this way, containerization simplifies deploy-
ment and management of applications.

Docker is used to run all of the servermodules. It was originally intended to
also use Docker for the slaves, it was nevertheless discovered that Docker is not

10Must be a console application and not a GUI application

37

VIA University
PROJECT REPORT é% College

intended for GUI application containerization. The slaves are therefore realized
as virtual machines. A technique that could be used instead of using virtual ma-
chines is App-V (Microsoft, 2018) or X11 forwarding (Business News Daily Staff,
2018). However, these were not further explored.

A major reason for using Docker is that it provides a consistent environment
for an application. This eliminates a possible failure point for an application and
is important especially in production.

The Docker container image also provides a simple package containing ev-
erything that the application needs which simplifies work on different part of
the project as it abstracts away the complexities of the already developed parts
of the application in a Docker container (Red Hat, n.d.).

3.4.3 Server module

As has been stated earlier, the ServerModule has the purpose of routing mes-
sages to ease deployment, reduce maintenance and increase scalability. How-
ever, as these are not major concerns in this project, there are no noteworthy
design decisions to be described.

3.4.4 Slave-owner servermodule

The responsibility of the slave-owner servermodule is, as can be deduced from its
name, to manage the active slaves and to boot up more slaves if necessary. How-
ever, as this system is only a simplified version of the production ready system,
the SlaveOwnerServermodule does not dynamically boot more slaves.

The SlaveOwnerServermodule is initialized with the information (including
network information) for the slaves, using system arguments, and the slaves are
started manually.

When the SlaveOwnerServermodule is initialized, it is responsible for han-
dling requests made to it. First request that can be made to a SlaveOwnerServer-
module is GetSlave, which returns an object that contains the necessary net-
work information for the client application to connect to a given slave module.
When requesting a Slave, the primary key of the calling client as well as which
application the slave module should be running must be supplied.

The second request is a GetListOfApplications request that returns a list
of all the applications that are supported. This information is used to show a list
of applications on the client application as shown in figure 5.

3.4.5 File servermodule

The area of concern for file servermodule, is to manage everything that has to
do with file storage and file access in the system. First, the file ownership is
discussed followed by a description of the supported remotely callable methods.

File ownership
As the system is designed now, the ownership of the files on the file servermodule

38

VIA University
PROJECT REPORT é% College

is stored by saving files from a given user into a folder with that user’s primary
key as the folder name.!! In a production ready system, the ownership should
be stored in a database. This approach allows for more flexibility and control and
makes it easier to add features such as sharing files.

Remote callable methods

Firstly, the file servermodule has a method called UploadFile. When the file
servermodule receives a request of this type, the request already contains the
file data as a byte array and the filename as a string. The directory location for
the user is based on the primary key that is also sent as an argument. Then file
servermodule checks if a file of that name already exists and if it does it checks
the last parameter of the remote call to check if it should overwrite the file or
not.

The second method is GetListOfFiles. It is called from the client applica-
tion and it simply returns a list of all the files that the logged in user (the only
parameter) owns which are displayed to the user as shown in figure 6.

The method DownloadFile simply downloads a file from the file servermod-
ule. The parameters for this remote call is the file name and the primary key of
the user.

The method RemoveFile takes same parameter as DownloadFile and re-
moves the given file from file servermodule.

Lastly, the method RenameFile renames a given file to a new file name of the
logged in user which represent the three parameters of this remote method call.

3.4.6 Database servermodule

The DatabaseServermodule is an instance of BaseServermodule, which means
it serves requests made by the DatabaseServermoduleProxy, an instance of
BaseProxy. The specific requests handled by DatabaseServermodule are Login-
Request and CreateAccountRequest. These requests query or insert into a
database described in the subsequent section.

Database

The database stores only login information of a user in a form of email and clear-
text password (Cornell, 2007). The database therefore has only a User table as
shown in figure 15.

Password is stored in cleartext as all security precautions are delimited. Database
stores only users at this point but it is easy to imagine it could store information
about the files, applications and slaves running the applications.

11This is obviously not optimal from a security perspective. However, all security concerns in this
system are delimited.

39

VIA University
PROJECT REPORT é% College

User
UserlD INT NOT NULL
Email VARCHAR (256) NOT NULL
Password VARCHAR (256) NOT NULL

Figure 15: ER diagram showing the User table

3.4.7 Slave controller

The slave controller runs on a slave and it is responsible for controlling it. The
SlaveController controls the slave by accepting commands from the client ap-
plication and forwarding these commands to Python processes that can execute
them using the PyAutoGUI API.

The slaves are setup as virtual machines that must be booted manually. These
virtual machines are run using Hyper-V, which is a default virtualization software
that comes with Windows (Pro/Education).

Communication between client application and slave module

The communication between the client application and the slave module uses the
generic communication library and its design can be seen in figure 16. It has been
decided that the SlaveController inherits from BaseRouterModule. This has
been done because any communication using the generic communication library
requests must have a module ID and to get a module ID in the way the library
is designed, it must be a BaseRouterModule. Since the ClientModule is the
active part and does not receive requests, the SlaveModule was chosen to be
the BaseRouterModule.

40

VIA University
PROJECT REPORT g% College

BaseCommunicationModule

BaseServermodule BaseClientModule
// T
BaseRouterModule
AN
SlaveController ClientModule

Figure 16: Client-to-slave communication library inheritance overview

Remotely callable methods

The SlaveController has a few remotely callable methods that are discussed
in this section.

The first method Handshake takes a primary key as a parameter. The primary
key is then stored by the SlaveController to use in future calls to the system
on behalf of the user connected to the SlaveController. The method then
returns a window size of the application running on a slave module that is used
to adjust the size of the slave application window.

The method DoMouseAction triggers a specific mouse action on the slave
module based on the given parameters.

The method FetchRemoteFile is called to get a slave module to download a
file from the file servermodule as to make a file from the file servermodule available
to the application running on the slave module.

Lastly, the method SaveFilesAndTerminate is intended to be called when
the client application is done using the slave module. The SlaveController upon
receiving this method call saves the files that have been downloaded or updated
to the file servermodule and then terminates.

PyAutoGUI

PyAutoGUI is described first as it is used in many of the APIs described in the fol-
lowing sections. Since .NET Core was chosen (see section 2.6), it is necessary to

41

VIA University
PROJECT REPORT é% College

use another technology for working with the screen, mouse and keyboard. This
is the case because .NET Core does not assume the existence of aforementioned
input/output devices. The technology that is chosen to handle these capabilities
is Python using the PyAutoGUI library (Sweigart, 2019).

PyAutoGUI is a library that is intended for automating GUI tests, and there-
fore has capabilities for screen capture, mouse and keyboard control. The com-
munication between the Python process and the SlaveController is realized
with a standard TCP connection, sending commands and arguments as strings.
For simplifying the startup process, the SlaveController is responsible for start-
ing the Python processes.

Mouse control

The mouse control APl supports the need to have scenarios actions specified in
section 2.2.3. It does this by adding a single remotely callable method to the
slave controller. This method accepts an object as an argument. By using this
argument it is possible for the slave controller to determine which of the mouse
actions listed below should be executed:

e Left mouse button down
e Left mouse button up

e Right mouse button down
e Right mouse button up

e Mouse move

This method then queues up the mouse action that is to be sent to the Python
process that runs PyAutoGUI for controlling the mouse, when it is ready for the
next action.

Keyboard control

Controlling the keyboard on the slave module is done using PyAutoGUI, which
supports both key down and key up events. For a slave application window to
send a key down or key up command to the slave module, there is only a single
remotely callable method called DoKeyboardAction. This method takes a string
that represents the key and a boolean indicating if the action is key down or key
up.

When the slave controller receives a DoKeyboardAction, it stores it to a queue
of keyboard actions to execute and a response is sent back to the slave applica-
tion window. Running in a separate thread is a loop that continuously dequeues
items from the queue of keyboard events and sends the dequeued item, using a
TCP connection, to a Python process that executes the command.

Screen capture and image sender

Screen capture can be approached from multiple stages of implementation dif-
ficulty. A standard solution without any proprietary technology is streaming

42

VIA University
PROJECT REPORT é% College

a video encoded by one of the most used codecs (such as VP9, H265, AV1
(Wikipedia contributors, 2019d)) with WebRTC (Mozilla Contributors, 2019b).
Streaming a compressed video as compared to streaming compressed images is
always going to be more efficient in terms of the data necessary for a certain
quality because of the additional processes that can be applied only to a video,
such as block motion estimation (Isikdogan, 2018). Using WebRTC seems to be
the best choice to achieve the lowest latency (Unreal Streaming Technologies,
2019). The act of capturing the desktop screen and encoding it to a video can
be done by a tool such as FFmpeg (FFmpeg contributors, 2019). Additionally,
this solution could also easily bundle the audio stream from the application on
the slave module as a part of the video.

However, this solution requires a specific knowledge and quite a lot of re-
sources. Therefore a more straightforward solution of using PyAutoGUI to take
screenshots as JPEGs and sending these to the client application was imple-
mented.

In the production ready system, technologies such as App-V or X11 forward-
ing could be used for interacting with the GUI running on the slave module. How-
ever, due to the scope constraints on this project, there simply has not been
enough resources to look into the viability of these technologies.

To reduce latency and increase throughput of images, the Python image cap-
ture sends the images directly to the client application through a regular TCP
connection. The client application gets the connection information to the Python
image capture process from the slave-owner servermodule and connects to it. The
protocol for sending the images through the TCP connection is then as follows.
First, an integer, containing the size of the image that is to be sent, is converted
into bytes and those are then sent through the TCP connection. Next, the image
is read into memory as a byte array and is sent via the TCP connection as well.
For receiving the images, the reverse process should naturally be followed. That
is, first read the bytes corresponding to an integer and use the integer value to
determine how many bytes to read. Now read the bytes and then save them to
a file. More about the saving process follows in section 4.1.1.

43

VIA University
PROJECT REPORT é% College

4 |Implementation

This section shows a few code listings from the project related to a certain topic
and describes them in detail. For brevity’s sake, the code listings are shortened.
Full source code can be found in appendix B.

4.1 Frontend

The frontend implementation describes image receiver in detail and shows a
typical usage of React in the project.

4.1.1 Image receiver

This section focuses on the image receiver from figure 10, specifically the usage
of a regular TCP socket for performance considerations and how are the images
received and used in the slave application window.

The communication module uses a TCP connection for receiving images. This
is the only place within the project where a low level TCP connection is used
directly. The reason to use a TCP connection here is for better performance.
However, this entails working with the byte buffers and designing the protocol
in such a way as to ensure a valid image transmission. The image size needs to be
transmitted first so that a byte buffer of an appropriate size can be instantiated
and afterwards filled with the image data.

The image data then needs to be stored to an image file which the slave
application window can show. The slave application window has an interval set
which refreshes the image as shown in code listing 1. This means that the slave
application window can read the image at any time, even when the image is being
written to by the image receiver which can result in the slave application window
showing a broken image icon shown in figure 17.

setInterval (() => this.updateImage(), 50); // time in ms
Listing 1: Slave application window interval for updating an image

kS

A

Figure 17: Broken image icon (McKalin, 2018)

To prevent this, the image data are stored from the byte buffer to a buffer file
and only when this is complete, this buffer file is copied to an image file that is
being shown by the slave application window. Note that this does not fully solve

44

o h 0w N e

VIA University
PROJECT REPORT g% College

the problem as the slave application window can still read the image file when
the buffer file is being copied over. However, it reduces the chance of the slave
application window reading the image file while it is in a non-readable state and
would produce the broken image icon.

4.1.2 React

React greatly facilitates building of single-page applications. As Facebook Inc.
(2019c) describes, by updating the state variable, React re-renders the compo-
nent. Furthermore, as described in Facebook Inc. (2019b) it only updates part
of the DOM that has been changed. As an example, the main window decides
whether to render a login form (figure 3) or an applications view (figure 5) based
on a loggedIn state variable. When it is changed, React re-renders the view
according to the code listing 2.

var toRender;
if (this.state.loggedIn) {
toRender = this.GetAfterLoginView () ;
} else {
toRender = this.GetLoginView () ;
}

Listing 2: Selective rendering based on loggedIn variable

Feature flag

As it is written in the code listing 2, login form is always going to be shown first
when the application launches. In the case when a developer is not working
on a login functionality, he does not need to see it. For that case a feature flag
(Wikipedia contributors, 2019a) that can disable the login functionality has been
implemented and used as is shown in the code listing 3.

var toRender;
if (FeatureFlags.AllowLogin) {
if (this.state.loggedIn) {
toRender = this.GetAfterLoginView () ;
} else {
toRender = this.GetLoginView();
}
} else {
toRender = this.GetAfterLoginView();
}

Listing 3: Usage of a feature flag

45

1

2

3

4

5

6

7

8

9

10

11

23

25

26

27

28

30

VIA University
PROJECT REPORT é% College

4.2 Middleware

This section covers some interesting implementation that is based on section
3.3.

4.2.1 Encoding

To be able to send responses as well as requests between the different nodes
in the system, these messages need to be serialized and deserialized. As has
already been discussed, the communication between the nodes is handles by
NetMQ. However, NetMQ can only handle objects of type NetMQMessage. The
purpose of the class discussed in this section is therefore to serialize and dese-
rialize object to and from NetMQMessage object, respectively.

In code listing 4, the Encoding class can be seen with an abstract DecodeJ-
sonToSpecificRequest method and two concrete — DecodeIntoSendable and
EncodeRequest — methods. The abstract method is called from the. DecodeIn-
toSendable method.

public abstract class Encoding
{ // several methods are hidden

protected abstract BaseRequest DecodeJsonToSpecificRequest(
string specificMethodID, string jsonString
)

public Sendable DecodeIntoSendable (NetMQMessage message)
{

var first = message.Pop().ConvertToString();

if (RESPONSE_PREFIX.Equals(first))
{
return TryDecodeJson<Response >(
message .Pop () .ConvertToString ()
)
}else if (ACK_RECEIVE.Equals(first))

{
return TryDecodeIntoAckReceived(message);
}
else
{
return DecodeJsonToSpecificRequest (
first, message.Pop().ConvertToString ()
)
}

public static NetMQMessage EncodeRequest (
BaseRequest request

)

46

VIA University
PROJECT REPORT é% College

var message = new NetMQMessage ();
message . Append (
new NetMQFrame (request.SpecificMethodID)
)
message . Append (
new NetMQFrame (EncodeToJson(request))

)

return message;

Listing 4: Sample of the Encoding class

EncodeRequest is used to build an object of the type NetMQMessage from an
object of a class that inherits from BaseRequest. As can be seen in the code
listing 4, the building of the message is done by creating the message object and
then appending two frames. The first frame is built using a string that is unique
to the type of the request. The second frame is the request object encoded
into JSON. Having finished building the NetMQMessage, it is returned and sent to
another node of the system.

DecodeIntoSendable is used on the receiving end, so its purpose is to de-
code the NetMQMessage into an object of a class that inherits from BaseRequest.
The only assumption made by this method is that the NetMQMessage, that is
passed as an argument, contains data for an object of type Sendable. From here
it checks the content of the first frame. The content is used to discover whether
this message contains data for an object of type Response or BaseRequest. If
an object of type Response is contained, it is decoded. Otherwise, the method
DecodeJsonToSpecificRequest is called. This method is implemented in a class
inheriting from Encoding and here a switch determines the specific type of the
BaseRequest using the string of the first frame, and creates an object of the
found type from the JSON in the second frame.

4.2.2 Middleware library

This section discusses some of the implementation that is used in the invoking
of remote requests and handling the response that comes back.

First, code listing 5 shows the code that is required to make a remote method
call available in a proxy. The necessary code to make a method callable remotely
is quite simple as shown.

The request is represented by a class (RequestGetList0fFiles) for which
arguments needed for the remote method call must be set. In this case the Pri-
maryKey field needs to be specified.

Furthermore, in code listing 5, three methods are called: SetStandardParam-
eters, WrapCallBack and SendMessage. SetStandardParameters is a method
that just sets some arguments used in routing and is therefore not that useful
to have a deeper look at. However, the other two methods are described in

47

1

2

VIA University
PROJECT REPORT g% College

more depth. Furthermore, the method ReceiveSendable is also elaborated on.
However, this method is not called in code listing 5.

public void GetListOfFiles (PrimaryKey pk, Action<List<
FileName >> callBack)

¢ var request = new RequestGetListO0fFiles();
request.PrimaryKey = pk;
SetStandardParameters (request) ;
var wrappedCallback = WrapCallBack<List<FileName >>(
callBack) ;
base.SendMessage (wrappedCallback, request);

}

Listing 5: Implementation of proxy method for remote method invocation

The method WrapCallBack that is shown in code listing 6, is the first method
to be discussed. To clearly understand the purpose of this method, it helps to
look back at code listing 5. Here it can be seen that when calling a remote
method through a proxy, a callback method must be provided. This callback is an
Action and the generic type parameter is of the type that is returned by the re-
mote method. To store these actions easily, they need to have the same generic
type parameter. This is where the method WrapCallBack comes into play. This
method takes an Action object with any generic type parameter, as long as this
inherits from a class and returns an Action object that takes a Response object
as argument. WrapCallBack method typecasts the Payload from the Response
into the type needed by the original Action and invokes that original action with
the typecasted argument.

//method found in class BaseProxy
protected static Action<Response> WrapCallBack<T> (
Action<T> callBack

) where T : class
{
return
(response) =>
{

var thePayload = response.Payload.ThePayload;
if (thePayload is JArray _jArray)
{
response.Payload.ThePayload =
_jArray.ToObject<T>() ;

48

-

N

© ® N o W

10

11

13

14

VIA University
PROJECT REPORT é% College

else if (thePayload is JObject jObject)
{
response.Payload.ThePayload =

jObject.ToObject<T>() ;

T obj = response.Payload.ThePayload as T;

if (null == obj)
{

throw new Exception(); // shortened

}
callBack.Invoke (obj);

Listing 6: WrapCallBack method

The code listing 7 shows the method SendMessage. It is the last step before a
message is sent off to another system node. The SendMessage method adds the
CallID with an object of type BaseProxy. This is done so that when a response
arrives at the ProxyHelper it can use the Cal1ID to lookup which object should
receive the response object. After this the method simply encodes the request
to a NetMQMessage, and sends that object off to the BaseRouterModule that this
ProxyHelper is connected to.

//method found in class ProxyHelper
public void SendMessage (
BaseRequest message
, BaseProxy baseProxy

callIDToResponseHandler . Add(
message.CallID.ID
, baseProxy

)

var req = Encoding.EncodeRequest (message) ;
this.outTraffic.SendMultipartMessage (req);
} // shortened

Listing 7: Method SendMessage

The method ReceiveSendable, which can be seen in code listing 8, is called
from a thread, that is only responsible for running this method. Because this
method is the only code that this thread runs, it is also the reason why there is
an infinite loop. First, the method binds a NetMQResponseSocket to a port. From
here the infinite loop starts. Next, receive an object which can either represent a
request or a response. This code listing only shows code relevant to the response

49

10

11

13

14

16
17

18

20
21
22

23

25
26
27
28
29
30
31
32
33
34
35
36
37
38

40

VIA University
PROJECT REPORT College

part. Here it is checked if the module receiving the response is a router module
and if the response is meant to be received by another module. If this is the case,
the object is sent off to another method to be routed to its destination. If the
response has arrived at the right location, the Cal111ID is used to lookup which
BaseProxy holds the callback for this response and then the object is forwarded
there. From here the callback is invoked, and this is how the remote method
invocation flows in a BaseCommunicationModule.

//method found in class ProxyHelper
public void ReceiveSendable (
Encoding customEncoding
, Port portToListenForIncommingData
)
{ // method is shortened
ResponseSocket inTraffic =
new ResponseSocket (
"tcp://" + "0.0.0.0:" +
portTolListenForIncommingData.ThePort

while (true)
{
//receive message
var message =
inTraffic.ReceiveMultipartMessage () ;
var sendable =
customEncoding.DecodeIntoSendable (message) ;

if (sendable is BaseRequest _request)
{ // shortened, relevent when receiving requets

}
else if (sendable is Response response)
{
if (baseModule is BaseRouterModule _router
&& response.TargetModuleID.ID != ModuleID.ID
)
{//routing
_router .HandleSendable (response) ;
}
else
{

var id = response.CallID.ID;
if (callIDToReponseHandler.ContainsKey (id))
{ //response to a known request
callIDToReponseHandler [id].
HandleResponse (response) ;
}
}

50

41

42

VIA University
PROJECT REPORT é% College

Listing 8: Method ReceiveSendable

5 Test

The desired level of testing for this project is positive testing (GURU99, n.d.[a]),
due to the nature of this project being to develop a prototype. Positive testing
means that the desired outcome of the test is to show that it is at least possible
to achieve the goal of a given use case scenario. Almost no effort was spent on
negative testing (Nadig, 2019), which would be trying to break the program and
to find out how robust the application is with managing faulty input.

In the ideal case, the testing should follow the testing pyramid (Vocke, 2018),
which means most tests are unit tests, fewer tests are broader reaching integra-
tion tests and the least amount of tests are automated GUI tests. There are two
main reasons why no time has been spent on developing the automated tests.

First, the project in its scope is still fairly small and short. Spending time
on automated tests makes sense only in the long term. This is because the main
value gained from automated tests is to verify that changes to code do not break
existing functionality and meet a certain quality.

Second, the nature of this project is such that most of the sensible testing is
in form of integration testing requiring more complex setup. Such an automated
integration testing is time demanding to create. Since they are more costly to
create and the value gained from them is relatively small, they are not done in
this project. By comparison, the individual units of the project, for which unit
tests could be written, are simple. As such, the tests in this project only consist
of manual (user acceptance) tests (GURU99, n.d.[b]).

The setup while testing is that everything runs on the same physical com-
puter. The servermodules are launched together using Docker Compose.12 The
slave module is running in a Hyper-V virtual Windows 10 machine and the client
application is running on localhost.

5.1 Test of use cases

In this section, the tests for each of the scenarios from all of the use cases from
section 2.2 are described. The steps of the scenarios are used as a test specifi-
cation, and the post-condition is used as the expected observable outcome.

The use cases have need to have and nice to have parts. The need to have parts
are tested in a structured manner, using the use case scenario steps. The nice to
have parts are tested in an exploratory manner.

12Docker Compose, is a way to run several Docker images "together" where routing is done with
IDs instead of static IPs like in DHCP (Docker Inc, n.d.[a])

51

VIA University
PROJECT REPORT é% College

Below is a test of a full use case that has been copied from appendix A to
showcase how the testing of the use cases has been done.

A table of all the test results (excluding the results of nice to have scenarios)
can be seen in a table in section 6.1.

Test of use case: Control a running application
This use case has 2 defined need to have scenarios, which are tested one by one.

Test of scenario 1 - Use of left and right mouse buttons, both up and down
events

Precondition: Having launched a specific application
Expected outcome: See that the mouse events were activated

Test steps:
1. Hover the mouse above the slave application window
2. Press down on either left or right mouse button
3. Optional: move the mouse

4. Release the mouse button to activate the up event

Executed steps:
1. The application Paint is used for this test
Move the mouse above the Pencil tool
Press left mouse button down
Release left mouse button
Observe that the tool got selected
Move the mouse such that it is above the "Home" tab
Press right mouse button down

Release right mouse button

0 o N o Uk~ LD

Observe that the context menu appears

Observed outcome: It was observed that both the left and the right mouse but-
ton actions occurred.

Test of scenario 2 - Keyboard control - Character keys, enter and backspace,
both down and up events

Precondition: Having launched a specific application and being in a state where
typing on the keyboard produces an observable outcome

52

VIA University
PROJECT REPORT g% College

Expected outcome: See that the expected key output occurred

Test steps:
1. Press key

2. Release key

Executed steps:
1. The application Paint is used for this test
2. The Text tool is selected from the toolbar
3. Create a text field by left clicking on the canvas

4. Enter the following pieces of text to demonstrate that every character key
is working

(a) " the quick brown fox jumps over the lazy dog " (Wikipedia contribu-
tors, 2019c¢)
(b) " THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG "
(c) "1234567890-="
(d) " 1@#$% & (_+"
(e "[l<>{\).7m~"
5. Furthermore, <Enter> and <Backspace> were also tested using the Text

tool by typing <Enter> to create a new line and <Backspace> to delete the
new line

Observed outcome: All of the keys worked and the test can therefore be deemed
a success

Test of nice to have - Control a running application:
1. Continuous mouse position update

¢ This was tested by drawing a circle in Paint. It was found that a circle
can be drawn. However, it appears that the mouse position is not
updated that often and therefore the circle tends to look more like a

polygon.
2. Scrolling

e Using WordPad as the test application it was found that scrolling does
not work

3. All remaining keyboard keys, both down and up events

53

VIA University
PROJECT REPORT é% College

e The following keyboard commands were tested in WordPad:

- <Ctrl>+<S>, triggered a save dialog window
- <Page Up> worked

- <Tab> worked

- <F10> worked

- <Insert> worked

- <Delete> worked

- <Esc> worked

4. Resize the slave application window
¢ |t was not found possible to resize the slave application window.
5. Changing the local cursor so it matches the one on slave module

¢ Did not occur during testing

5.2 Test of non-functional requirements

Besides use cases with scenarios, there are also non-functional requirements for
this system. As with the test of the use case scenarios, the test results can be seen
in a table in section 6.1. The tests of non-functional requirements are described
below.

5.2.1 Non-functional requirement 1 (Windows 10)

The first non-functional requirement to be tested is "the client application must
run on Windows 10". This is somewhat trivial to test. The step to do this test is
to be on a Windows 10 machine and try to run the client application. This test
completed with a success.

5.2.2 Non-functional requirement 2 (CPU utilization)

The non-functional requirement that is tested here is "the client application must
be able to run on a low-end laptop CPU with an average CPU Mark score of
4967 (PassMark, 2019) with three concurrent client applications running, never
exceeding 30% utilization".

This test is conducted on a computer with a CPU having exactly the CPU
Mark score specified in the non-functional requirement. This computer runs only
the client application. Another computer runs all of the server suite, including the
three slave modules. The applications that are used here are two instances of
Paint and one instance of WordPad.

The result of the test was that running of the client application averaged
around 29% to 35% CPU usage. Therefore, this requirement cannot be stated
as passed. However, as it is not far off, it can be said with some certainty that it
would be possible to bring the CPU utilization under the 30% threshold.

54

VIA University
PROJECT REPORT g% College

5.2.3 Non-functional requirement 3 (command delay)

The non-functional requirement that is tested here is "the delay from a mouse or
keyboard command given until the result of execution being shown in the slave
application window must never exceed 3 seconds".

Two tests were performed as a part of this non-functional requirement. One
where the keyboard was the focus of the test and another test where the focus
was on the mouse.

WordPad was used for testing the keyboard. The text was typed at a tempo
of approximately 3 chars per second for about 20 seconds. It was observed that
it took longer than 3 seconds for the final character to be displayed in the slave
application window.

Paint was used for testing the mouse. Here 20 lines were drawn over the
period of 10 seconds using the Pencil tool with one down and one up event for
each line. And again after drawing the last line, it took more than three seconds
before it appeared.

It is important to mention that the first action actually does happen within
the first three seconds. However, the commands are executed slowly and the
commands queue up so the last command in the queue gets executed with a
significant delay.

55

VIA University
PROJECT REPORT % College

6 Results and discussion

6.1 Table of test results

Test results of nice to have scenarios are not included in the table of test results.

Scenario name

Passed/Failed

Use case: Manage account

Create account Passed
Login to account Passed
Logout of account Passed
Use case: Launch a specific application

Launch a specific application Passed
Use case: Control a running application

Use of left and right mouse buttons, both up and down Passed
events

Keyboard control - Character keys, enter and backspace, Passed
both down and up events

Use case: Manage personal files in the system

Upload file Passed
Download file Passed
Use file already in the system from within an application Passed
Get a file from a running application to the system Passed
Non-functional requirement:

"The client application must run on Windows 10" Passed
"The client application must be able to run on a low-end lap- Failed
top CPU with an average CPU Mark score of 4967 (Pass-

Mark, 2019) with three concurrent client applications run-

ning, never exceeding 30% utilization"

"The delay from a mouse or keyboard command is givenun- Failed

til the result of execution being shown in the slave applica-
tion window must never exceed 3 seconds"”

56

VIA University
PROJECT REPORT é% College

6.2 Discussion of test results

As it can be seen in the table in section 6.1, all of the use case tests passed,
however, two of the non-functional requirements did not. One thing to note
here is that there are several more nice to have tests that failed which are not
included in this section.

6.2.1 Discussion of failed non-functional requirement 2 (CPU utilization)

The first test that failed is a non-functional requirement that states the CPU
utilization of the computer that is running the client application must never ex-
ceed 30%. The test showed the utilization to be hovering around 29% to 35%.
However, as the team did not focus on optimization, it is conceivable that this
requirement is easily achievable.

A clear opportunity for improvement of both quality and performance is af-
forded by implementing video streaming, as the current solution realized with
the PyAutoGUI Python module is not very efficient. The screen capture would
be much more efficient and smooth as a video stream as mentioned in section
3.4.7. This could be done using FFmpeg (FFmpeg contributors, 2019).

6.2.2 Discussion of failed non-functional requirement 3 (command delay)

The second test that failed is a non-functional requirement that states "the delay
from a mouse or keyboard command is given until the result of execution being
shown in the slave application window must never exceed 3 seconds". This non-
functional requirement ties in with the use case "Control a running application"
as it is the performance of the scenarios in this use case that is tested in the non-
functional requirement. Here both of the need to have scenarios associated with
the use case passed. However, from a user’s perspective the verdict might differ,
which is expressed by the failure of the non-functional requirement.

The root cause of the slow execution speed was determined to be that PyAu-
toGUI is rather slow. Or more specifically, PyAutoGUI cannot execute com-
mands as fast as they are sent to the slave module. This causes the commands to
queue up and therefore, if several commands are given in short succession, the
delay exceeds 3 seconds. However, if there are no commands queued and just
a single command is issued, PyAutoGUI is able to execute this command within
the 3 seconds time period. Nevertheless, since the non-functional requirement
states that the delay must never exceed 3 seconds, the non-functional require-
ment is stated to fail.

The fact that PyAutoGUI executes commands slowly is also what led to the
design decision to have the mouse location update once every second, as it oth-
erwise got very easily overwhelmed with commands to execute. Therefore to
make this non-functional requirement pass, another technology would have to
be used to control both the mouse and the keyboard on the slave module.

57

VIA University
PROJECT REPORT g% College

6.3 General discussion

It is noteworthy that all of the need to have parts of the use cases have passed
their test. This means that the system now has all of the core functionality that
was expected at the outset of this project. It must be brought forth that the
software developed here is not yet a minimum viable product (Technopedia, n.d.)
as many actions either cannot be performed, are unsecure or too slow.

"Delete account" nice to have scenario can serve as an example of what is still
missing. Such a functionality is not necessary for demonstrating the feasibility
of the envisioned system. However, the situation changes once the production
ready system is considered.

Another functionality that is missing is that of streaming the audio from the
slave module to the slave application window. This is something that proves diffi-
cult with the currently used virtualization platform Hyper-V as it does not sup-
port creation of virtual sound cards. It is therefore impossible to capture sound
from the slave module as there is no virtual sound card for the sound to be played
on and captured from. It would therefore be necessary to find a third party tool
that can generate virtual sound cards or completely move to another virtualiza-
tion platform.

An example of an action that currently happens too slow is a continuous
update of the mouse location. As described in section 5.1, because the mouse
location is updated only once every second, the drawing of a circle ends up as a
polygon or simply just a line.

It should be noted that even though the testing has been done only with Paint
and WordPad, there is no technical obstacle that would prevent the system from
working with other more demanding applications.

58

VIA University
PROJECT REPORT é% College

7 Conclusion

The accomplishments of the developed system are summarized below.

The developed system allows users to run applications remotely (WordPad
and Paint have been tested), although the computational efficiency of the sys-
tem is not great, as described in section 6.2.1. The user is able to interact with
the applications with mouse and keyboard, albeit not all of the interactions are
possible and, as mentioned in the section 6.2.2, the system can exhibit quite a
long delay. The system allows the user to store data and can therefore act as a
central storage for all of the user’s data, even though a primitive one, as elabo-
rated in section 2.2.4.

The developed system serves as a demonstration of the production ready
system that would address the issues layed out in the introduction. More work
outlined in the nice to have scenarios (section 2.2), delimitations (section 2.4) and
project future (section 8) would have to be put into the project to constitute a
minimum viable product.

That being said, it is now discussed how the production ready system ad-
dresses the disadvantages of the status quo.

First, as long as a device is able to use the system, its application use is not
confined by the components it contains. This is an important point worth reiter-
ating. As long as even an old power-efficient laptop has Internet access and the
envisioned system installed, the user can work with power-hungry applications
such as Adobe Premiere Pro, Autodesk 3ds Max, Trimble SketchUp and similar.

Second, the system has the potential to eliminate the need to replace hard-
ware because of lacking computational performance. The same need is, how-
ever, retained for the reasons of mechanical failure of the device or better hard-
ware outside of the computational realm, such as better screen and battery. The
system can, however, change the way how computers are used and with that,
prevent the migration effort associated with acquisition of a new machine that
is required nowadays.

Third, the system allows the user to run applications across different operat-
ing systems. This is important because it diminishes the importance of using a
particular operating system. In addition, the system can also be augmented with
features valuable for the user, such as password management and file history.

Fourth, even a device that relies on the system would be idle most of the time.
The point is, however, that this device is comparatively much less powerful than
an average machine sold nowadays and the powerful hardware, which is situated
in data centers and runs the actual applications, can be utilized very efficiently.

Fifth, the user is bereft of the responsibility to update the application as this
is something the system does in the background and the user is therefore always
running the most up-to-date software.

Lastly, it is important to realize that with the setup the system implements, a
user’s setup is not central to his local machine. Instead, it is in the cloud, acces-
sible from whichever machine running the system after logging in.

At its current stage, the developed system does not meet a single of its afore-

59

VIA University
PROJECT REPORT é% College

mentioned aspirations. Achieving just one of them is rather challenging and re-
quires much more work on multiple elements of the system. Most importantly,
the deficiencies discussed in section 6.2 would have to be addressed. However,
the developed system represents a solid basis which can be further improved to
gradually attain its initial ambition.

8 Project future

There are many aspects of the project that would have to be considered and im-
plemented to be even a minimum viable product. These include considerations
about business model, CIA triad (Rouse, 2014) (security and availability), pri-
vacy concerns, system scalability, legal matters, supporting more applications,
hardware provisioning and additional features. As Elon Musk said (Musk, 2019),
“the really hard part that requires a lot of resources is optimizing something past
the initial prototype phase and bringing it into volume production.”

The rest of this section examines these concerns in more detail.

8.1 Business model

If this project would ever be available commercially, it is imagined that the busi-
ness model would be based on a monthly subscription fee. After all, many busi-
nesses today are going down that path as well. It seems as a good way for both
the customers - for whom the barrier to start using the product is not too great
- and for the business itself, which gets a continuous stream of cash that in the
aggregate might bring in more profits than any other model.

An analysis would have to be performed to decide upon specific details for
the subscription fee, such as:

1. Is there a single subscription type or multiple ones that differ in price and
offered services?

2. Are there any limitations on usage of a subscription (or a particular type),
e.g.. maximum offered computation power per month, number of devices
a subscription can be used from or application packs that a subscription
offers?

3. What is a reasonable price that, when scaled up, covers the cost and still
provides a wide profit margin?

4. Can afreemium model or otherwise limited free version be provided to get
into a compounding virality loop? (Hoffman and Chestnut, 2019)

8.2 Security and privacy

As in every modern project, security of the system itself and the data it stores
needs to be considered. This project entails more traditional security problems

60

VIA University
PROJECT REPORT é% College

such as security of database and other data files stored in the system but also a
more interesting problem of securing the transmission of video and audio feed
and the user’s inputs over the network so the system cannot be misused and
abused. Solving this problem is part of privacy concerns as well as only by solv-
ing this problem can the user trust the system and know that no unauthorized
person can get access to his data.

8.3 Availability

Users rely on the system to be available whenever they need so availability is
a key for the commercial success of the product. Solving this problem requires
the system to be stable and efficient in the long run, so the system would have
to better optimized.

8.4 Legal matters

As this system functions only as a bridge to other applications from other com-
panies and developers, the obvious legal issue are licenses for the applications
accessed by users.

8.5 Hardware provisioning

The applications on slaves and servermodules in the end have to be running on
some hardware. This would be provisioned by one of the providers such as AWS,
Microsoft Azure, etc., as is the today’s standard (Amazon Web Services, 2017).
Only in the case of performance optimization on the level of hardware and cost
savings would it make sense to consider administering own hardware and data
centers.

8.6 Scalability

Scalability means the ability to handle potentially exponentially increasing user
base and therefore load on the system while expanding the capability of the
system. For the system to scale well, it needs to be properly optimized.

This is partly addressed with the system being designed using individual mod-
ules that have their concerns separated as described in 3.4. This design allows
the whole system to scale out as opposed to scale up (Banks, 2014) which is a
preferable strategy in the long term. However, more needs to be done in order
to truly allow this kind of scalability.

8.7 Application selection

The more applications the system can support, the more users can become in-
terested in using the system. Therefore expanding the selection of available
applications is important. The goal should be to allow the users to request an

61

VIA University
PROJECT REPORT é% College

application that is not currently available and the system being able to provide it
in a matter of just a few minutes. Therefore, it is inherently tied to the problem
of system scalability.

8.8 Additional features
8.8.1 Automatic slave initialization

An important part of the system that is managed manually at the moment is the
initialization of a slave running the requested application. Automation of this
has a high priority and is inherently interlinked with the hardware provisioning
described in section 8.5.

8.8.2 Store application configuration

In order to fulfill one of the main aspirations, the system has to be able to store
individual user’s application configuration and apply it to the initialized applica-
tion when it is launched and provided to the user.

8.8.3 Automatic application updates

Another major advantage the system can provide to its users is always using
up-to-date applications without the need to spend any time updating by them-
selves. The system would need to update its applications while they are not
being used. At the same time, the system should still provide the possibility to
run an application in a certain version in case the user prefers that version over
the most up-to-date.

8.8.4 Integrated system augmentations

Additionally, the system allows for more augmentation and integration of other
applications, providing even more benefits to its users.

Integrated file history

One of those integrations is a file history for each file uploaded to the system so
that the user can always go back to the previous version of the file.

Integrated password management

Another integration is that of a password manager which would automatically
fill-in the login details to other services.

62

VIA University
PROJECT REPORT g% College

References

Alvarez, M., 2009. The Average American Adult Spends 8 1/2 Hours A Day Starting
Into Screens. [Online; accessed 26-August-2019]. Available at: <https://
atelier . bnpparibas/en/smart - city/article /average - american -
adult-spends-8-1-2-hours-day-staring-screens>.

Amazon Web Services, 2017. Netflix on AWS. [Online; accessed 02-December-
2019]. Available at: <https://aws.amazon.com/solutions/case-studies/
netflix/>.

Banks, E., 2014. What does “scale out” vs. “scale up” mean? [Online; accessed 02-
December-2019]. Packet Pushers. Available at: <https://packetpushers.
net/scale-up-vs-scale-out/>.

Beach, T. E., 2000. Types of Computers. [Online; accessed 09-April-2019]. Avail-
able at: <https://web.archive.org/web/20150730182332/http: //www.
unm. edu/~tbeach/terms/types.html>.

Business News Daily Staff, Sept. 2018. How To Set Up And Use X11 Forwarding
On Linux And Mac. [Online; accessed 27-October-2019]. businessnewsdaily.
Available at: <https://www.businessnewsdaily.com/11035-how-to-use-
x11-forwarding.html>.

Cornell, D., Oct. 2007. Cleartext vs. Plaintext vs. Ciphertext vs. Plaintext vs. Clear

Text. [Online; accessed 16-October-2019]. Denim Group. Available at: <https:

//www.denimgroup.com/resources/blog/2007/10/cleartext-vs-pl/>.

Dignan, L., 2019. Top cloud providers 2019: AWS, Microsoft Azure, Google Cloud;
IBM makes hybrid move; Salesforce dominates SaaS. [Online; accessed 09-April-
2019]. Available at: <https: //www . zdnet . com/ article/top - cloud -
providers - 2019 - aws -microsoft - azure - google - cloud - ibm - makes -
hybrid-move-salesforce-dominates-saas>.

Docker Inc, n.d.(a). Overview of Docker Compose. [Online; accessed 22-November-
2019]. Available at: <https://docs.docker.com/compose/>.

— n.d.(b). Docker. [Online; accessed 21-September-2019]. Available at: <https:
//www.docker.com>.

Electron, 2019a. About Electron. [Online; accessed 30-September-2019]. Avail-
able at: <https://electronjs.org/docs/tutorial/about>.

— 2019b. Electron Apps. [Online; accessed 30-September-2019]. Available at:
<https://electronjs.org/apps>.

— 2019c. ipcMain | Electron. [Online; accessed 30-September-2019]. Available
at: <https://electronjs.org/docs/api/ipc-main>.

— 2019d. ipcRenderer | Electron. [Online; accessed 30-September-2019]. Avail-
able at: <https://electronjs.org/docs/api/ipc-renderer>.

Facebook Inc., 2019a. React - A JavaScript library for building user interfaces. [On-
line; accessed 16-December-2019]. Available at: <https://reactjs.org/>.

— 2019b. Rendering Elements - React. [Online; accessed 16-October-2019]. Avail
able at: <https://reactjs.org/docs/rendering-elements.html>.

— 2019c. State and Lifecycle - React. [Online; accessed 16-October-2019]. Avail-
able at: <https://reactjs.org/docs/state-and-lifecycle.html>.

63

VIA University
PROJECT REPORT g% College

FFmpeg contributors, 2019. FFmpeg - A complete, cross-platform solution to record,
convert and stream audio and video. [Online; accessed 22-November-2019].
Available at: <https://github.com/FFmpeg/FFmpeg>.

Figueiredo, R., 2019. Electron CGl. [Online; accessed 30-September-2019]. Avail-
able at: <https://github.com/ruidfigueiredo/electron-cgi>.

Gilbert, B., 2018. The PlayStation 4 continues to dominate as the world’s most pop-
ular gaming console. [Online; accessed 09-April-2019]. Available at: <https:
//www . businessinsider . com/ps4-playstation-4-1lifetime-sales-
2018-1>.

GitHub, 2019. css - GitHub Topics. [Online; accessed 30-September-2019]. GitHub.
Available at: <https://github.com/topics/css>.

GURU99, n.d.(a). Positive Testing and Negative Testing with Examples. [Online; ac-
cessed 18-September-2019]. Available at: <https : / / www . guru99 . com/
positive-and-negative-testing.html>.

— n.d.(b). What is User Acceptance Testing (UAT)? with Examples. [Online; accessed
04-December-2019]. Available at: <https : // www . guru99 . com / user -
acceptance-testing.html>.

— 2019. Top 21 Cloud Computing Service Provider Companies in 2019. [Online;
accessed 10-October-2019]. Available at: <https : / /www . guru99 . com/
cloud-computing-service-provider.html>.

Hintjens, P., 2019. @MQ - The Guide. [Online; accessed 21-November-2019].
iMatix. Available at: <http: //zguide . zeromq . org / page : all/ #The -
Socket-API>.

Hoffman, R. and Chestnut, B., May 2019. The Case For Bootstrapping. [Online; ac-
cessed 14-October-2019]. Masters of Scale. Available at: <https://mastersofscale.
com/wp - content /uploads/2019/05/mos - episode - transcript - ben-
chestnut-.pdf>.

Hunt, P, 2019. React: Rethinking best practices. [Online; accessed 30-September-
2019]. Youtube. Available at: <https : / / www . youtube . com/watch?v=
x7cQ3mrcKaY>.

Isikdogan, L., 2018. How Video Compression Works. [Online; accessed 22-November-
2019]. Youtube. Available at: <https://youtu.be/QoZ8pccsYod>.

LaMarco, N., 2018. The Average Lifespan for Laptops. [Online; accessed 09-April-
2019]. Available at: <https : / / smallbusiness . chron . com/ average -
lifespan-laptops-71292.html>.

McAfee, A., 2019. More from Less Overview — Andrew McAfee. [Online; accessed
05-October-2019]. Available at: <https://andrewmcafee.org/more-from-
less/overivew>.

McKalin, V., 2018. Broken image icon in Google Chrome browser. [Online; accessed
9-December-2019]. Available at: <https : //www . thewindowsclub . com/
broken-image-icon-google-chrome-browser>.

Microsoft, Sept. 2018. Application Virtualization (App-V) for Windows 10 overview.
[Online; accessed 16-October-2019]. Microsoft. Available at: <https : //
docs .microsoft.com/en-us/windows/application-management /app-
v/appv-for-windows>.

64

VIA University
PROJECT REPORT g% College

Microsoft, 2019. TypeScript - JavaScript that scales. [Online; accessed 16-December-
2019]. Available at: <https://www.typescriptlang.org/>.

Mozilla Contributors, 2019a. Chrome - MDN Web Docs Glossary: Definitions of
Web-related terms | MDN. [Online; accessed 03-October-2019]. Available at:
<https://developer.mozilla.org/en-US/docs/Glossary/Chrome>.

— 2019b. WebRTC API - Web APIs | MDN. [Online; accessed 22-November-2019].
Available at: <https://developer.mozilla.org/en-US/docs/Web/API/
WebRTC_API>.

Musk, E., 2019. Starship Update. [Online; accessed 14-October-2019]. Youtube.
Available at: <https://youtu.be/s0pMrVnjYeY?7t=3565>.

Nadig, S., 2019. What Is Negative Testing And How To Write Negative Test Cases?
[Online; accessed 14-November-2019]. Software Testing Help. Available at:
<https://www.softwaretestinghelp.com/what-is-negative-testing/>.

NLog, 2019. NLog - Flexible & free open-source logging for .NET. [Online; accessed
30-September-2019]. Available at: <https://nlog-project.org/>.

PassMark, 2019. PassMark - Intel Core i5-6267U @ 2.90GHz. [Online; accessed
06-September-2019]. Available at: <https : / / www . cpubenchmark . net /
cpu.php?cpu=Intel+Core+i5-6267U+%40+2.90GHZ>.

Puget Systems, n.d. Recommended Systems for Adobe Premiere Pro. [Online; ac-
cessed 29-November-2019]. Available at: <https://www.pugetsystems.
com/recommended / Recommended - Systems - for - Adobe - Premiere - Pro -
143/Hardware-Recommendations>.

Red Hat, n.d. What is Docker? [Online; accessed 04-December-2019]. Available
at: <https://opensource.com/resources/what-docker>.

Robinson, D. and Coar, K. A. L., Oct. 2004. The Common Gateway Interface (CGl)
Version 1.1. RFC 3875. RFC Editor. Available at: <http://www.rfc-editor.
org/rfc/rfc3875.txt>.

Rouse, M., n.d. cloud storage service. [Online; accessed 09-April-2019]. Avail-
able at: <https://searchstorage.techtarget.com/definition/cloud-
storage-service>.

— 2014. What is confidentiality, integrity, and availability (CIA triad)? [Online; ac-
cessed 10-October-2019]. Whatls.com. Available at: <https : / / whatis .
techtarget.com/definition/Confidentiality-integrity-and-availability-
CIA>.

Sorhus, S., 2019. Useful resources for creating apps with Electron - Boilerplates. [On-
line; accessed 30-September-2019]. Available at: <https://github.com/
sindresorhus/awesome-electron/#boilerplates>

Sweigart, A., 2019. Welcome to PyAutoGUI’s documentation! [Online; accessed
26-September-2019]. Available at: <https : //pyautogui . readthedocs .
io/en/latest/>.

Technopedia, n.d. What is a Minimum Viable Product (MVP)? - Definition from Techo-
pedia. [Online; accessed 04-October-2019]. Available at: <https: //www .
techopedia.com/definition/27809/minimum-viable-product-mvp>.

Unreal Streaming Technologies, 2019. Unreal Media Server FAQ | What are best
practices for lowest latency live streaming? [Online; accessed 22-November-

65

VIA University
PROJECT REPORT g% College

2019]. Available at: <http : //umediaserver . net / umediaserver / faq .
html#What-are-best-practices-for-lowest-latency-live-streaming>.

Vitolins, K., 2019. Create a desktop app with Electron, React and C#. [Online; ac-
cessed 30-September-2019]. Available at: <https://itnext.io/create-
desktop-with-electron-react-and-c-86£9765809b7>.

Vocke, H., 2018. The Practical Test Pyramid. [Online; accessed 14-November-
2019]. Available at: <https://martinfowler.com/articles/practical-
test-pyramid.html>.

Wikimedia Commons, 2018. File:ISO keyboard (105) QWERTY UK.svg — Wikime-
dia Commons, the free media repository. [Online; accessed 9-December-2019].
Available at: <https://commons . wikimedia.org/w/index.php?title=
File:ISO_keyboard_(105)_QWERTY_UK.svg&oldid=331373586>.

Wikipedia contributors, 2019a. Feature toggle — Wikipedia, The Free Encyclopedia.
[Online; accessed 2-November-2019]. Available at: <https://en.wikipedia.
org/w/index.php?title=Feature_toggle&oldid=920378491>

— 2019b. Sass (stylesheet language) — Wikipedia, The Free Encyclopedia. [Online;
accessed 16-December-2019]. Available at: <https://en.wikipedia.org/
w/index.php?title=Sass_(stylesheet_language)&01did=929083869>.

— 2019c. The quick brown fox jumps over the lazy dog — Wikipedia, The Free En-
cyclopedia. [Online; accessed 18-November-2019]. Available at: <https://
en.wikipedia.org/w/index.php?title=The_quick_brown_fox_jumps_
over_the_lazy_dog&oldid=926313765>.

— 2019d. Video coding format — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 22-November-2019]. Available at: <https://en.wikipedia.org/w/
index.php?7title=Video_coding_format&oldid=927055403>.

— 2019e. Webpack — Wikipedia, The Free Encyclopedia. [Online; accessed 16-
December-2019]. Available at: <https://en.wikipedia.org/w/index.
php?title=Webpack&oldid=929083977>.

ZeroMQ, n.d. ZeroMQ. [Online; accessed 19-September-2019]. Available at: <https:
//zeromq.org/>

66

VIA University
PROJECT REPORT é% College

Appendices

A Test of use cases

Test of use case: Manage account
This use case has 3 defined need to have scenarios, which are tested one by one.

Test of scenario 1 - Create account

Precondition: Precondition having launched the client application
Expected outcome: Get logged into the newly created account

Test steps:
1. Press "Create account”
2. Enter valid required information

3. Press "Create account and login"

Executed steps:
1. Press button "Create account"
2. Enter "test@ccfeu.com" into "Email address" field
3. Enter "password" into "Password" field
4. Press button "Create account and login"
5. Press button with gear icon
6. Observe the email currently logged in is also "test@ccfeu.com"

Observed outcome: It was observed that the client application was logged into
the newly created account, with the email "test@ccfeu.com”, by observing the
email address in the settings dropdown menu

Test of scenario 2 - Login to account

Precondition: Having launched the client application and already having created
an account with login information {Email:"admin@ccfeu.com", Password:"pass"}
Expected outcome: User is logged in

Test steps:
1. Enter required information

2. Press "Login"

67

VIA University
PROJECT REPORT é% College

Executed steps:
1. Enter "admin@ccfeu.com" into "Email address" field
2. Enter "pass" into the "Password" field
3. Press button with gear icon
4. Observe the email currently logged in is also "admin@ccfeu.com"

Observed outcome: It was observed that the email "admin@ccfeu.com" was dis-
played as the email currently logged into, just as expected

Test of scenario 3 - Logout of account

Precondition: Having launched the client application and be logged into an ac-
count
Expected outcome: The login form is shown

Test steps:
1. Click on settings menu

2. Click on "Logout" from the context menu

Executed steps:
1. Press button with gear icon
2. Press "Logout"
3. Observe that the login form is now shown

Observed outcome: It was observed that the login form was shown just as ex-
pected

Test of nice to have - Manage account:
1. Update account information
e Currently not possible
2. Delete account
e Currently not possible

Test of use case: Launch a specific application
This use case has only 1 defined need to have scenario which needs to be tested.

Test of scenario 1 - Launch a specific application

68

VIA University
PROJECT REPORT é% College

Precondition: Having launched the client application and be logged in
Expected outcome: New window is created that after initialization shows the se-
lected application

Test steps:
1. Navigate to the list of application

2. Find and click on the desired application

Executed steps:
1. Click the "Apps" button at the top of the client application
2. Click the "Paint" button
3. A new window appeared from which Paint could be used

Observed outcome: A new window appeared showing the application Paint

Test of nice to have - Launch a specific application:
1. Streaming visual representation of the application as a video
e Currently not possible

Test of use case: Control a running application
This use case has 2 defined need to have scenarios, which are tested one by one.

Test of scenario 1 - Use of left and right mouse buttons, both up and down
events

Precondition: Having launched a specific application
Expected outcome: See that the mouse events were activated

Test steps:
1. Hover the mouse above the slave application window
2. Press down on either left or right mouse button
3. Optional: move the mouse

4. Release the mouse button to activate the up event

Executed steps:
1. The application Paint is used for this test

2. Move the mouse above the Pencil tool

69

VIA University
PROJECT REPORT g% College

Press left mouse button down

Release left mouse button

Observe that the tool got selected

Move the mouse such that it is above the "Home" tab
Press right mouse button down

Release right mouse button

Y © N o U A~ w

Observe that the context menu appears

Observed outcome: It was observed that both the left and the right mouse but-
ton actions occurred.

Test of scenario 2 - Keyboard control - Character keys, enter and backspace,
both down and up events

Precondition: Having launched a specific application and being in a state where
typing on the keyboard produces an observable outcome
Expected outcome: See that the expected key output occurred

Test steps:
1. Press key
2. Release key

Executed steps:
1. The application Paint is used for this test
2. The Text tool is selected from the toolbar
3. Create a text field by left clicking on the canvas
4

. Enter the following pieces of text to demonstrate that every character key
is working

(a) " the quick brown fox jumps over the lazy dog " (Wikipedia contribu-
tors, 2019c¢)

(b) " THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG "

(c) " 1234567890-="

(d) "'@#$% &*()_+ "

(e " Ol<>{\ /2~

70

VIA University
PROJECT REPORT é% College

5. Furthermore, <Enter> and <Backspace> were also tested using the Text
tool by typing <Enter> to create a new line and <Backspace> to delete the
new line

Observed outcome: All of the keys worked and the test can therefore be deemed
a success

Test of nice to have - Control a running application:
1. Continuous mouse position update

¢ This was tested by drawing a circle in Paint. It was found that a circle
can be drawn. However, it appears that the mouse position is not
updated that often and therefore the circle tends to look more like a

polygon.
2. Scrolling

¢ Using WordPad as the test application it was found that scrolling does
not work

3. All remaining keyboard keys, both down and up events

e The following keyboard commands were tested in WordPad:

- <Ctrl>+<S>, triggered a save dialog window
- <Page Up> worked

- <Tab> worked

- <F10> worked

- <Insert> worked

- <Delete> worked

- <Esc> worked

4. Resize the slave application window

¢ |t was not found possible to resize the slave application window.
5. Changing the local cursor so it matches the one on slave module

¢ Did not occur during testing

Test of use case: Manage personal files in the system
This use case has 4 defined need to have scenarios, which are tested one by one.

Test of scenario 1 - Upload files

Precondition: Having launched the client application, be logged in and having nav-
igated to the 'Files’ tab
Expected outcome: The uploaded file appears in the list of files

Test steps:

71

VIA University
PROJECT REPORT g% College

1. Press "Upload file" button

2. Select a file using the file explorer

Executed steps:
1. Click button "Upload new file"

2. Select file "test.txt" from the desktop of the local computer, using the file
picker dialog window

3. Observe that the file do appear in the list of files

Observed outcome: A file with filename "test.txt" appeared in the list, just as
expected

Test of scenario 2 - Download file

Precondition: Already having at least one file in the system
Expected outcome: The selected file is downloaded to "Downloads" folder on the
local PC

Test steps:
1. Select a file

2. Press "Download file" button

Executed steps:
1. Click on the file with name "test.txt" in the list of files
2. Click the button "Download file"
3. Navigate to the local computer’s "Downloads" folder
4. Open the file to see that the content is as expected

Observed outcome: The file appeared in the "Downloads" folder with the ex-
pected content

Test of scenario 3 - Use file already in the system from within an application

Precondition: Already having at least one file in the system and having a running
application
Expected outcome: The selected file can be opened in the application

Test steps:
1. Select the file to send

72

VIA University
PROJECT REPORT g% College

2. From the main application window, press "Send file to an application" button
3. From the dropdown menu select an application to send the selected file to

4. Open the file from within an application in a usual way. The file is found in
a designated file location.

Executed steps:
1. The application Paint is used for this test
Upload a file "test.png" to the system
Select "test.png" file and click the button "Send file to an application"
Click "Paint"
Using the slave application window do <Ctrl>+O
Navigate to "ccfeu-files" folder located in Desktop

Open file "test.png"

© N o A~ D

The file from the system can now be used

Observed outcome: It was observed that the file could be used using the slave
application window, just as expected

Test of scenario 4 - Get a file from a running application to the system

Precondition: Having performed steps described in "executed steps" of scenario
"Use file already in the system from within an application”
Expected outcome: The list of files is updated and changes are present

Test steps:
1. Save changes to "ccfeu-files" folder located in Desktop
2. Click to close the slave application window

3. When the slave application window is closed, the files are saved to the sys-
tem

Executed steps:
1. The application Paint is used for this test
2. Modify the image using the Pencil tool

3. Press <Ctrl>+S to save the changes

73

VIA University
PROJECT REPORT g% College

4. Close the slave application window using the cross button in the top right
corner

5. Download the file
6. Observe the changes made using the slave application window

Observed outcome: It was observed that the changes made using the slave ap-
plication window were present just as expected

Test of nice to have - Manage personal files in the system:
1. Rename file in the system

e This was tested by uploading a file "test.txt" to the system. When
that was done, the file was selected from the list of files, a new name
"test.test" was typed in the text field and the "Rename file" button
was pressed and it was observed that the renaming occurred.

2. Organize files in the system using folders

e This is currently not possible

B Source code

Source code can be found in the accompanying .zip and on
https://github.com/cloud-computing-for-end-users

74

VIA University
PROJECT REPORT %% College

C Project description

See next page.

75

VIA University
College

CLOUD COMPUTING FOR END USERS

BACHELOR PROJECT DESCRIPTION

Kenneth Ngrholm 254309
Krystof Spiller 253812

supervised by
Poul Erik Vaeggemose

11794 characters (not including spaces)

Software Engineering, 6" semester
May 11,2019

76

Document versions:

regards to team conventions.

Version Change Date

0.1.0 Initial draft (no sources, one subproblem is being | 2019/04/05
reevaluated)

0.11 Added sources, clarification of problem state- | 2019/04/11
ment, delimitation section revised

0.1.2 Added one subproblem about system security | 2019/04/18
and delimited against it

1.0.0 Time schedule section updated, small text revi- | 2019/05/11
sions and aesthetic fixes

101 Typo fixed. Date and version format changed in | 2019/09/06

Contents

1 Background description
Definition of purpose

Problem statement
Delimitation

Choice of models and methods

Time schedule

N o un AW

Sources of information

77

VIA University
BACHELOR PROJECT DESCRIPTION College

1 Background description

If we have a closer look at the current status quo in computing for regular users
we find that the user needs to have their own hardware that does the actual
computation. One can find many disadvantages with such an approach.

First, the hardware needs to be exchanged every so often, on average every 5
years (Durden, 2018), for a new one because of the hardware obsolescence and
therefore lacking computational performance. This will necessarily require some
time to be spent selecting the new model and setting it up, as well as paying the
upfront cost of the computer. Furthermore the setting up of a new computer can
be a frustration with installing all of the software from the previous machine, and
copying the existing data. In case of laptops it means exchanging the whole ma-
chine instead of only the parts involved in computation which is also unnecessarily
wasteful.

Second, the hardware the user bought has only a limited computational po-
tential or use case that stays the same for the rest of the hardware lifetime. This
means that if this hardware has been bought for ordinary office work, one cannot
expect to be able to play the latest games on it as well. On the other hand in
case of gaming consoles, which is just another piece of computational hardware
many people buy (Gilbert, 2018), one cannot expect to be able to do any office
work. A lot of hardware is also made for a specific form factor further limiting
the machine’s potential. Consider for example the constrains imposed on laptop
manufacturers.

Third, the hardware is tied to a certain operating system that allows to use
features and applications available only on that system. Although you can run
many operating systems on one machine, you will nonetheless have a problem
if you want to run two applications that are each available only on a different
operating system.

Fourth, the fact that the user and only the user owns and uses this hardware
means that it in fact sits idle and unused most of the time (Alvarez, 2009). This
strategy is wasteful, especially if we consider the relative ease of centralizing
processing power, which allows for a much higher utilization (Dignan, 2019).
Assume a conservative estimate that the hardware is being used for 25% of the
time and stays idle for the remaining 75%. This means that the world needs four
times more hardware than if the hardware would be used non-stop without being
idle.

Lastly, if a user does not have the hardware with them, they cannot access
their machine and use it. Data sharing services such as Dropbox, Google Drive or
Microsoft OneDrive (Rouse, n.d) allow users to put their data to a cloud, making
them accessible from every computer with an Internet access. As of now however,
a solution that would provide the same comfort accessing a whole user’s setup
does not exist.

This bachelor project looks into a solution that alleviates the aforementioned
disadvantages. A solution that is inspired by historical approach to computation
with mainframe and client (Beach, n.d) and mimics an approach of cloud computing

78

VIA University
BACHELOR PROJECT DESCRIPTION College

services, only in this case directed at end users rather than businesses.

2 Definition of purpose

A purpose of this project is to change the status quo in computation by avoiding
limited computational potential of the hardware and specific use case imposed
mainly by the operating system, minimize the initial investment and additional
investment of both time and money in the future associated with computation,
decrease the hardware idle time and reduce environmental impact of hardware
production and finally provide access to the user’s environment from any com-
puter with Internet connection.

3 Problem statement

How canauser! run any application(s), notwithstanding the OS, simultaneously
using the same data without buying expensive hardware themselves?

Subproblems:

1. How can the user avoid buying expensive hardware?

2. How can it be made possible for a user to run any application notwithstand-
ing the operating system?

e How can any operating system be supported?

e How can any application be supported?
How can the applications share data?
How can a user run multiple applications simultaneously?
How to make the system as responsive as is required for it to be useful?

How to make the system scalable?

T A o

How can users data be secured?

8. How can the system be secured against unintended use?

LIn order to clarify the problem domain, three types of users are considered:
Type 1: A content creator starting out could use this system for resource intensive tasks such as
video rendering and editing.
Type 2: A regular computer user who uses their computer for ordinary activities but finds that a
computer is too expensive and would like to have a much cheaper option, even if this would require
an Internet connection to function.
Type 3: An advanced user that is able to utilize other advantages of the system, such as being able
to access their environment from any computer with Internet connection or using any application
notwithstanding the operating system on which it runs.

79

VIA University
BACHELOR PROJECT DESCRIPTION College

9. How canit be ensured that the system is available for 99.99% of time?

10. How can legal ramifications for providing access to our system be avoided?

4 Delimitation

One of the subproblems that will not be considered further in this project is
subproblem 7. Storing users data securely will not be considered. However, the
system will store data for each user separately. The reason why other security
considerations are not included into the project is that it would take time away
from developing the core functionality of the system.

One more subproblem that relates to security is subproblem 8. Not only the
users data need to be secured when the product comes to production, but the
whole system needs to be secure and prevent any unintended use. However, for
the purpose of this proof of concept application this requirement will not be taken
into consideration.

Next subproblem that will not be considered is number 9 - how to ensure that
the system will have an uptime of more than 99.99%. This particular subproblem
only becomes important when the product is used by real users. Otherwise it
only represents a burden during the development of the first product iteration. In
order to achieve the uptime goal the resulting solution would have to be stable
and efficient in the long term.

Another subproblem that will not be considered are the possible legal prob-
lems that arise with creating such a system - subproblem 10. The obvious legal
issue are licenses for the applications accessed by the users. This issue will not be
addressed as it is not necessary for the purposes of this proof of concept, it has no
relation to a software engineering education and it is hard to confront without
the necessary knowledge in the legal field.

Regarding the 2. subproblem, for the purposes of the first product iteration
it will be limited to only support Windows 10 and an instance of Ubuntu. Fur-
thermore, for each of the systems only two suitable freeware applications will be
supported. This is due to the fact that the system is expected to be only a demo,
and as such two applications is enough to demonstrate the proof of concept for
the system.

Subproblem number 6 — how to make the system scalable — will only be
considered and partially dealt with if the time allows as this subproblem was
estimated to be the biggest in relation to how much time will be needed to solve
it,as can be seenin the next section.

5 Choice of models and methods

The whole group will be responsible for all the tasks discussed in the following
table:

80

VIA University
BACHELOR PROJECT DESCRIPTION College
What Why Which Which What
- subproblem - study this problem - outcome is expected - methods / models / the- | - is the estimated work-

ories will be used

load?

How can the user avoid
buying expensive hard-
ware?

This is of interest as
many people do not
have a big amount of
disposable income so
when their computer
eventually requires re-
placement it can have
a bigimpact on their fi-
nances.

The expectation here
is a proof of concept,
meaning that it is not
expected that people
could start using this
product instead of
buying new computers
when this project
is finished. Further
development would
be needed to achieve
that.

Utilize theory regard-
ing distributed systems
and UML? as a model-
ing tool to design and
document the system.

The time for complet-
ing this problem is in-
cludedinthe estimated
time for subproblem 2
and 3.

How can it be made
possible for a user to
run any application
notwithstanding the
operating system?

This is relevant to
study as this is part of
the main functionality
of the project. It ben-
efits the end user in a
way that they do not
need to consider what
operating system the
application they want
to use is compatible
with.

It is expected to be
completed to a degree
where the principle can
be demonstrated. That
is, as it is specified in
the delimitations, this
will only be demon-
strated with applica-
tions running on two
different operating sys-
tems.

System design will be
very much the center
of attention. Further-
more theory from the
area of computer net-
working will also be
very relevant.

This is expected to
take approximately
275 hours.

How can the applica-
tions share data?

This is relevant in
order to retain the
convenience while
accomplishing the first
subproblem. Achieving
this subproblem allows
applications to access
all of the users data
notwithstanding the
machine and operating
system on which the
application runs.

This is expected to be
completed to a level
so thatitis possible to
demonstrate at least
some sharing of data
among applications
running on different
operating systems.

As a basis a theory
from a Computer Net-
works course will be
used to build an ar-
chitecture that allows
sharing of data.

It is estimated for this
to take 136 hours.

2Three-point estimation (Whiting, n.d) of form E = (Eoptimistic + 4 % Erealistic + Epessimistic)/6
was used to calculate the estimate

3Unified Modeling Language

81

VIA University
BACHELOR PROJECT DESCRIPTION % College
What Why Which Which What
- subproblem - study this problem - outcome is expected - methods / models / the- | - is the estimated work-
ories will be used load
How can a user run | This is relevant as | This is expected to | Theory of system | Itisexpected for thisto

multiple applications
simultaneously?

users need to be able
to work with many
applications at the
same time as they are
used to.

be completed to a
degree where this
functionality can be
demonstrated onthree
applications running
simultaneously. It
cannot be automat-
ically assumed that
the system will be
able to scale to more
applications at the
same time.

design and computer
communication.

take 102 hours.

How to make the sys-
tem as responsive as
is required for it to be
useful?

This is important
to consider as it
will uncover some

non-functional perfor-
mance requirements
for the system. It is
important to find both
what is the acceptable
responsiveness of the
system for the user
and what are the ways
to achieveit.

This is expected to be
completed to a limited
extent where the main
focus will be on refresh
rate and the ping time
of the system.

For this subproblem
mainly the theory of
computer communica-
tion will be used.

Although it is expected
tobeachievedonlytoa
limited degree, it is still
estimated to take 267
hours.

How to make the sys-
tem scalable?

This is somewhat ob-
vious as the system is
intended to be used
by many people, and
as such a non-scalable
system will not be of
any use as soon as
many users start using
it.

This is expected to be
done to some extent
but mainly through
solving other problems
with scalability in mind.

Mainly an automation
of system deployment
has to be explored and
developed here. Sys-
tem architecture has
to be reconsidered for
an efficient scalable de-
ployment.

Itis estimated that this
will take up around 692
hours.

82

VIA University
BACHELOR PROJECT DESCRIPTION College

6 Time schedule

Around 1000 to 1100 hours is expected to be spent from August to December.
This brings up the total of hours spent to around 1250 hours.

The deadline for the project is December 12. To have a time buffer it is planned
for a transition phase to be done by December 6.

3 O W e
o > raY > I >
U U

1. Inception 2. Requirements 3. Elaboration 4.1 Remotely control
phase start done phase done application with mouse
via client module

w W W 18.10.2019
O O 0O
A4 A 4

5. Transition 4.4 Keyboard and two-way 4.3 User accounts and 4.2 File sharing between
phase done audio-video transmission file privileges modules and applications
support

Figure 1: Timeline with milestones of the project

Following list describes some of the milestones visible in figure 1 in greater
detail:

2. Project proposal, project description and SRS* documents are approved.

3. Conclusion of the initial analysis including the completion of a critical path
analysis (Mind tools content team, n.d.).

4.1. Fundamental functional design is done and the client is able to run a remote
application and control it with only mouse, meaning no other input is being
transmitted.

4.2. Applications and users are able to access all of the files in the shared file
storage.

4.3. Until now, a notion of a user account did not exist. This milestone imple-
ments user accounts and limits access to files that the user owns.

4.4. Support for keyboard controls is introduced. Furthermore, input from a
microphone is being sent and audio is also being received by the client in
addition to the video.

5. Completion of the project and process report.

4Software Requirement Specification

83

VIA University
BACHELOR PROJECT DESCRIPTION College

7 Sources of information

Web references:

Alvarez M., 2009. The Average American Adult Spends 8 1/2 Hours A Day
Starting Into Screens. Available at: <https://atelier.bnpparibas/en/smart-
city/article/average-american-adult-spends-8-1-2-hours-day-staring-
screens> [Accessed 09-04-2019]

Beach, T.E., n.d. Types of Computers. Available at: <https://web.archive.
org/web/20150730182332/http://www.unm.edu/ tbeach/terms/types.html>
[Accessed 09-04-2019]

Dignan D., 2019. Top cloud providers 2019: AWS, Microsoft Azure, Google
Cloud; IBM makes hybrid move; Salesforce dominates SaaS. Available at: <https:
//www.zdnet.com/article/top-cloud-providers-2019-aws-microsoft-azure-
google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/>[Ac-
cessed 09-04-2019]

Durden O., 2018. The Average Lifespan for Laptops. Available at: <https:
//smallbusiness.chron.com/average-lifespan-laptops-71292.html> [Ac-
cessed 09-04-2019]

Gilbert B.,2018. The PlayStation 4 continues to dominate as the world’s most
popular gaming console. Available at: <https://nordic.businessinsider.com/
ps4-playstation-4-lifetime-sales-2018-17r=US&IR=T> [Accessed 09-04-
2019]

Mind tools content team, n.d. Critical Path Analysis and PERT Charts. Avail-
ableat: <https://www.mindtools.com/pages/article/critical-path-analysis.
htm> [Accessed 25-04-2019]

Rouse M., n.d. cloud storage service. Available at: <https://searchstorage.
techtarget.com/definition/cloud-storage-service>[Accessed 09-04-2019]

Whiting B., n.d. Three-Point Estimating: Definition & Role in Scheduling. Avail-
ableat: <https://study.com/academy/lesson/three-point-estimating-definition-
role-in-scheduling.html> [Accessed 09-04-2019]

84

VIA University
PROJECT REPORT é% College

D User manual

This user manual is intended to be read by users of the system "Cloud computing
for end users".

To start using the system, boot up the client application. Form here on a user
account is needed.

To create an account, press the "Create account" button, then enter an email
and a password for the account and press "Create account and login" button.
This automatically logs you in to the newly created account. If an account already
exists, simply login to that account using the email and password associated with
it.

When successfully logged in to an account, there are now two different op-
tions of how to proceed. The first option is to launch applications and use these.
This can be done by clicking one of the applications displayed in the list of appli-
cations. This opens a new window from where the application can be used after
the initialization is done.

The second option is to go to the files tab by clicking "Files" in the navigation
bar in the top. The files view shows the list of files and it is also possible to
upload files to the system, download files from the system, rename them and
delete them.

When files have been uploaded to the system, they can be used by the
launched applications. This is done by selecting a file from the list of files, press-
ing the button "Send file to an application" and then clicking on the specific ap-
plication that the file should be made available to.

The file is found in "ccfeu-files" folder on Desktop from where it can be
opened in the application as usual.

When finished working with the file using the application, simply save the
changes in the application and close the application window using the cross but-
ton in the top right corner. This saves the changes to the system.

Lastly, to logout of an account, press the gear icon on the main window and
then the "Logout" button in the dropdown menu.

This concludes the simple overview of the system that is provided in this user
manual.

85

PROJECT REPORT

E Authorship

VIA University
College

S

Section name

Main responsible

Abstract

Introduction

Analysis

Design - Frontend

Design - Middleware

Design - Backend - File servermodule
Design - Backend - Database servermodule
Design - Backend - Remaining 5 sections
Implementation - Frontend
Implementation - Middleware

Test

Results and discussion

Conclusion

Project future

Krystof, Kenneth
Krystof, Kenneth
Krystof, Kenneth
Krystof

Kenneth

Krystof

Krystof

Kenneth

Krystof

Kenneth
Kenneth

Krystof, Kenneth
Krystof, Kenneth
Krystof

86

